ECE 156A - Syllabus

Lecture 0

Description

• Introduction to HDL (Hardware Description Language) basic elements, HDL simulation concepts, HDL concurrent statements with examples and applications, writing HDL for synthesis, and writing HDL for finite state machines.

• In this course, we will teach Verilog HDL.

• You will learn the design techniques and methodologies employed in the industry.

• This course prepares you to be a logic designer or a verification engineer.
Prerequisites

- ECE 152A Digital Design Principles

You should be familiar with the material covered in ECE 152A such as
 - boolean algebra, switching functions, application of Boolean algebra to the design and analysis of combinational logic nets, minimization procedures, analysis and synthesis of sequential switching circuits, synchronous and asynchronous operation, state minimization, hazards, and races.

152A Outline (Johnson)

- Digital Design Principles
- Boolean Algebra
- Karnaugh Maps
- Propagation Delay, Adder Design
- Combinational Logic Design with Verilog
- Latches, Flip-Flop, Counters
- Sequential Circuit Design
- Sequential Circuit Design with Verilog
- Mealy and Moore Machine
- Finite State Recognizers
- Controller Design
- Machine Minimization
- RAM and ROM based Design
- Combinational Building Blocks and Bus
Textbooks

 - Not absolutely required
 - But this is an excellent book to learn about the foundation of Synthesis processes
 - Also used for 156B

Verilog Tool

• For Verilog simulation, we recommend you to use Mentor Graphics ModelSim in the ECI lab
 - Get an account from ECI lab
 - Login from home with window display
 - Very handy for experienced user
Using Design Compiler

- You can use any Verilog simulator to check the correctness of your Verilog code
 - But if there is any discrepancy, we will use ModelSim as the golden reference for correctness

- Later in the quarter, I will introduce you the synthesis tool, Design Compiler (DC)
 - There will be 1 or more exercises using DC
 - You will need an account at the ECI lab
 - Please open an account at the ECI lab if you haven't had one
 - TAs will give a tutorial on DC later

Web Site

- My home http://mtv.ece.ucsb.edu/

- Course web page
 http://mtv.ece.ucsb.edu/courses/ece156A_14/
 - No need for Username and Password
 - The update of course web page may be delayed from time to time.
 - Please be patient.

- TAs will also run a separate Google group
Grading

• Homework and Programming Assignments
 - 40%
 - About 6-7 of them
 - Entirely controlled and graded by TAs

• Two Exams
 - In-class Mid-term: 25%, Nov 5th, Wednesday
 - Final: 35% (as scheduled by the school)
 - Both are closed-book exams
 - No exception on exam times and formats

Special Schedule

• Attending conference
 - October 20, 22
 - Classes be taught by Instructor Sebastian Siatkowski

• Instruction ends on December 10 (Wed)

• I will be out of town during Dec 12-16
 - TAs will be there for the final exam
TAs and Lab sessions

- 13730 Lab R 10-11:50am
 - Matthew Nero (2012 156A class)
 - mrnero@umail.ucsb.edu
 - Office hour: **TTH 5-7pm**
- 13748 Lab R 5-7:50pm
 - Ahmed Wahba
 - awahba@umail.ucsb.edu
 - Office hour: Comm. through Google group
- 13755 Lab T 5-7:50pm
 - Jay Shan (2012 156A class)
 - jayshans@hotmail.com
 - Office hour: **MW 3-5pm**
- My office hour – after class and by appointment

Lab sessions and grading

- **One lab session for every HW assignment**
 - TA will instruct you about the lab session
 - We don’t have lab session every week

- Homework grading
 - Turn in your HW to your TA
 - Your TA will grade them

- Discussion group
 - Your TA will send you an email about the group
Intended Course Outline

- Overview of design methodology (Chap 1)
 - Self-review: Chap 2 and Chap 3
- Introduction to Verilog (Chap 4)
- Behavior modeling (Chap 5)
- Introduction to synthesis (Chap 6)
- 2-level logic synthesis (2nd textbook)
 - Traditional method
 - Complete sum method
 - Solving constraint matrix problem
- Functional verification
- Postsynthesis design task (Chap 11)
 - Static timing analysis

Grade Example (2013)
Five Questions

• Why am I here?

• What do I expect to learn?

• What am I going to do next year?

• How can being here help me?

• What do I not understand?

My Perspective

• You can learn many “techniques”
 - But “techniques” change (quickly) over time

• You can learn one fundamental “idea”
 - And the “idea” never change

• The reason that you are learning those “techniques” is so that you can understand the fundamental “idea”
 - So the “idea” becomes your “intuition”
10 Ideas We Might Learn

• 10 Design means “constrained optimization”
• 9 Design is based on models and models are not reality and they are never 100% correct
• 8 No perfect design; you just need to be better than your competitor
• 7 It is all about efficiently handling the complexity
• 6 More important to put yourself into the right vision and perspective
• 5 When searching for a solution in a complex space, it is more effective to know where you don’t have a solution

Cont.

• 4 Understand your problem well, then the solution will come to you
• 3 When something does not make an intuitive sense, it probably does not make sense
• 2 All practical answers are simple; Only simple answers are practical
• 1 There is no difficult problem; If you find it difficult, the difficulty is only reflecting something about yourself