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Experience of Data Analytics in EDA and Test -
Principles, Promises, and Challenges

Li-C. Wang

Abstract—Applying modern data mining in Electronic Design
Automation (EDA) and Test has become an area of growing
interest in recent years. This paper reviews some of the recent
developments in the area. It begins by introducing several key
concepts in machine learning and data mining, followed by a
review of different learning approaches. Then, the experience
of developing a practical data mining application is described,
including promises demonstrated through positive results based
on industrial settings and challenges explained in the respective
application contexts. Future research directions are summarized
at the end of the paper.

Index Terms—Machine learning, data mining, design automa-
tion, test, verification

I. INTRODUCTION

Modern data mining approaches have found many appli-
cations in EDA and test in recent years. In design and test
processes, tremendous amounts of simulation and measure-
ment data are generated and collected. These data present
opportunities for applying data mining [1].

Generally speaking, data mining refers to the process of
extracting patterns from data. Fig. 1 illustrates this simplistic
view. The term pattern commonly refers to something that has
statistical significance or appears frequently. With this view,
three key questions can be asked:
• How to feed the data to a data mining tool?
• Which data mining tool to use?
• How the results (patterns) can be utilized?

Fig. 1. Three key questions with data mining

Today, many software packages are available, providing a
comprehensive set of modern data mining tools. An example
is the Scikit-learn Python library [2].

Fig. 2. Dataset seen by a learning tool

Typically, a learning tool expects to see a dataset formatted
in a matrix form, as illustrated in Figure 2. In such a dataset,
each sample is represented by a vector of values based on a
set of features. To format a dataset as shown in Figure 2, one

needs to make two decisions: (1) to define what a sample is,
and (2) to define the set of features. Given raw data, there can
be multiple choices for the sample definition, and there can be
many choices for features as well. Therefore, many datasets
may be constructed to explore those choices.

Given a dataset, the selection of the tool depends on the
characteristics of the dataset. For example, when ~y is present
and there is a label for every sample, the dataset is analyzed
with a supervised learning tool (e.g. a classification tool if y
is a category label, or a regression tool if y is a real number
value). When ~y is not present and only X is, the dataset
is analyzed with an unsupervised learning tool. When some
(usually many fewer) samples have labels and others do not,
the analysis can be based on semi-supervised learning.

In some cases, y can be multivariate. Instead of ~y, the right
hand side can be a matrix Y. For example, a partial least
square regression tool is designed for regression between two
matrices. A canonical correlation tool performs multivariate
correlation analysis on a dataset of X and Y (see, e.g. [3]).

The selection of the tool also depends on the utilization
of the learning results. For example, if the results are to be
interpreted by a person, a tool that produces a simple model is
preferred. If the results are used by another tool, then accuracy
of the prediction may become the key criterion to select a tool.

In practice, the effectiveness of data mining is not just about
the tool. To illustrate this point, Fig. 3 depicts a more realistic
view for data mining. In this view, data mining can be seen
as an iterative knowledge discovery (KD) process [4].

A KD process begins by a person taking a perspective,
which can be thought of as a particular way to construct the
datasets that are fed into a tool. The tool outputs results (or
models) described with some statistical properties. The person
examines these properties to determine their meaningfulness,
which can mean that the results are interpretable and action-
able, or the models are applicable.

Fig. 3. Iterative knowledge discovery process

The process is iterative because often the person determines
that the results are not meaningful. Then, in the next iteration,
the person alters the perspective, i.e. changing the way to
construct the datasets, and starts a new run.

A KD process essentially is a search process, either search-
ing for interpretable and actionable results or searching for
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applicable models. In such a process, domain knowledge
is involved in the dataset construction and meaningfulness
determination steps. And because of this, one can perceive that
learning from data is a process of using the data to enhance
one’s domain knowledge. In other words,

Knowledge + Data ⇒ Learning
In theory, learning from data would not be possible without
any knowledge [5] to begin with. While this view is not new,
it is especially important to emphasize the need for domain
knowledge in a KD process because its effectiveness depends
on the dataset construction and meaningfulness determination
steps, both of which are domain knowledge driven.

Based on the KD view, the objective of this paper is to
share our experience from developing various data mining
applications in the past. Six application areas are included for
discussion. They are (1) functional verification, (2) physical
verification, (3) design-silicon timing correlation, (4) yield
improvement, (5) customer return modeling, and (6) test cost
reduction. In each of these areas, results based on an actual
industrial setting are summarized and discussed.

Applications discussed in this paper are examples, and
they are not intended to be a representative set of important
applications in EDA and test. Also, it is not author’s intent to
provide a survey or tutorial of the relevant works. The goal is
to utilize these examples to illustrate the principles, promises,
and challenges of data mining in EDA and test.

The rest of the paper is organized as follows. Section II
discusses several key concepts in machine learning. These
concepts serve as a foundation to understand the essence of
learning from data. Section III provides a short review of
learning approaches commonly employed in an application.
Section IV presents the methodologies and results in three
pre-silicon areas. Then, section V presents the methodologies
and results in three post-silicon areas. Section VI discusses a
fundamental issue concerning the robustness of data mining.
Section VII concludes the paper.

II. CONCEPTS IN MACHINE LEARNING

This section explains several key machine learning concepts.
While the discussion is based on supervised learning, the
concepts can also be applicable in unsupervised learning. To
begin the discussion, Fig. 4 shows two simple examples, one
in a discrete space and the other in a continuous space.

Fig. 4. Examples to illustrate model complexity and noise

The discrete space is a 3-dimensional space based on binary
features x, y and z. Samples in this space have 8 possible
feature vectors, 000, 001, . . ., 111. Suppose the data contains
7 samples. They are labeled as “green” and “red” as shown

in the plot. The one sample whose label is unknown is the
feature vector 110. The learning task is to learn from the 7
samples and predict the label of the sample 110.

The example shows two possible models, a red model
labeling sample 110 as red, and a green model labeling the
sample as green. It is important to note that the true label of
the sample can be either red or green. Hence, one cannot say
which model is better with respect to the truth. What one can
say is why one model is chosen over the other.

For example, if one desires to choose a simpler model, the
red model will be chosen. One can say that the red model
is chosen because it has a lower model complexity than the
green model. The red model basically classifies the upper four
samples as green and the lower four as red. For example,
one can specify the model as “If z > 0.5, then label green;
otherwise label red.” To specify the green model, two features
are required. For example, the green model can be specified
as “If z > 0.5 and x > 0.5, then label green; otherwise label
red.” The green model is more complex because it requires
one more feature to describe the model.

While the red model is simpler, it ignores that sample 100
is labeled green in the data. This can be viewed as that one
believes the data contains noise. Hence, the label with 100 is
not entirely trustable. Consequently, the simpler red model is
chosen by treating the sample 100 as noise. This belief may
be altered if multiple samples of feature vector 100 are drawn
and they are all labeled green. In that case, one may be forced
to abandon the red model and adopt the green one.

The example shown in the continuous space is similar. There
are 7 samples, s1, . . . , s7 with color labels. Sample s8 is to be
predicted. The red model predicts its label as red by treating
the green label of s7 as noise. The green model predicts s8’s
label as green. The red model has a lower complexity than the
green model because the red model is a linear model while
the green one is a non-linear model. Again, the true label of
s8 is unknown and can be either red or green. One cannot say
which model is better with respect to the truth.

The simple examples point out two important considerations
for learning a model: model complexity and noise. It is impor-
tant to recognize that these considerations are only based on
one’s assumptions, and in the worst case, a chosen model can
still be wrong with respect to a particular prediction regardless
how much effort is put into the learning.

A. Setting of the supervised learning problem

Fig. 5. Setting of the supervised learning problem

More formally, Fig. 5 depicts the setting of the supervised
learning problem. The learning problem comprises three com-
ponents: (1) A generator G that draws samples x from an
unknown probability distribution p(x); (2) A supervisor S that
takes x as input and outputs a value y according to a function
F (x); (3) A learning machine LM capable of implementing
a set Q of functions qα(x) = ŷ based on a set of parameters
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α ∈ Λ. The goal is to learn a function q() based on a set
Tm of m training samples (xi, yi), 1 ≤ i ≤ m such that q()
provides as good as possible an approximation to F (x). The
approximation is evaluated based on samples not in Tm, i.e.
samples with unseen feature vectors.

Without any assumption on G and on F (x), there is no
learning (i.e. not learnable). For example, one needs to make
an assumption stating how the training samples (past) is related
to the unseen samples (future). This concerns the generator
G. One also needs to make an assumption (or restriction) for
the underlying phenomena to be learned. This concerns the
function F (). In fact, the no free lunch theorem for machine
learning [6] states that without either assumption, the learning
is not possible, or more specifically that there is no one
learning algorithm that is better than another in terms of their
average performance in predicting for the unseen samples.

Note that the question of learnable was studied in the early
years within the general scope of inductive inference [7][8].
For example, learnability is characterized in the limit where
the inductive inference is viewed as an infinite process [7].
One aspect of the research focused on characterizing what
families of formal language are learnable under a particular
inference scheme, e.g. whether two classes or just one class
of samples are provided; whether the learner is allowed to
query the supervisor. In contrast, Fig. 5 uses a narrower view
of machine learning simply to facilitate the discussion.

B. Computational learning - limited discrete feature values

Suppose the learning is based on n features where each
feature can have a value of 0 or 1. Suppose the supervised
function F () to be learned is a Boolean function. This for-
mulation is called Boolean learning, and was studied with the
Computational learning theory (CLT) [9][10].

The CLT captures the notion of learnable based on the so-
called Probable Approximately Correct (PAC) model. Under
PAC, the learning result is assured by two parameters (1)
0 < δ < 1

2 : that the learning algorithm with 1− δ probability
will output a desired model (Probable) and (2) 0 < ε < 1

2 : that
the desired model has an error bounded by ε (Approximately
Correct). Note that we need two parameters because the
training samples are randomly drawn and, consequently, the
performance of a learning algorithm is randomized.

The PAC framework is commonly used to study if a function
is efficiently learnable or not. For example, suppose the
function structure is F (x) = P1 + P2 + P3 where each P
is a product term. Then, it can be shown that this structure is
not efficiently PAC-learnable. More precisely, one can show
a polynomial-time reduction to translate an NP-complete lan-
guage (e.g. the graph 3-coloring problem) to the PAC learning
3-term DNF (Disjunctive Normal Form) formulae. In other
words, learning 3-term DNF is computationally hard.

For a function structure that is not efficiently PAC-learnable,
learning the function may require to draw an exponential
number (with respect to n - the number of features) of samples.
Many function structures are not efficiently PAC-learnable. In
other words, the power of learning is rather limited. However,
this view is based on the accuracy requirement guaranteed by
the two parameters δ and ε. For practical use, for example, the

work in [11] shows that if one only seeks for “good” results
without the particular guarantee, learning a Boolean function
with a high percentage of accuracy may still be achievable.

In the cases that one desires to learn a function that requires
an exponential number (i.e. O(2n)) of training samples, one
has to limit the n. This means that one has to pre-select a small
set of important features to enable the learning. In Fig. 3, this
pre-selection would take place in the dataset construction step.

C. Statistical learning - continuous feature values

When the features take values in a continuous domain, it is a
subject studied in statistical learning theory [12]. In statistical
learning, it is also often assumed that the outputs are corrupted
with some random noise ε.

1) Learning complexity: Instead of capturing learning com-
plexity in terms of the function structure as that in CLT, in
statistical learning theory, learning complexity is captured in
the concept called Vapnik-Chervonenkis (VC) entropy [12].
Again, suppose the learning machine LM is capable of imple-
menting a set Q of functions based on some parameters α ∈ Λ.
Informally, for a set of m random samples, let H(Q,m) be
the subset of functions that fit the sample set. VC entropy
measures the complexity of H(Q,n), i.e. the entropy of the
set of functions based on the given samples. In other words,
the VC entropy can be thought of as the complexity seen by
the learning machine on the data of size m.

Because the parameters α can take on any values in a
continuous space, the set H(Q,m) is not countable. To
measure entropy, one way is to “discretize” the continuous
space using a concept call ε-net [12]. A ε-net basically is
a small region of parameter values where the corresponding
functions are deemed indistinguishable. With this construct,
complexity measurement becomes feasible [12].

The VC entropy is used to study the concept called learning
consistency. Suppose the learning machine always picks a
learning model that has the smallest possible error rate on the
training samples (This is called Empirical Risk Minimization
(EMR) principle). Consistency means that the error rate given
by the learning machine on the training samples represents
the true error rate for future samples. Vapnik [12] shows that
the necessary and sufficient condition to achieve consistency
is limm→∞

V CEntropy(H(Q,m))
m = 0. In other words, the

complexity seen by the learning machine on the data grows
slower than the data size.

D. Capacity and falsifiability

The VC Entropy, as m → ∞, can be thought of as a
measure of the capacity of a learning machine. One important
conclusion from the statistical learning theory is that a learning
machine should not have unlimited capacity, i.e. being able
to learn a function of any complexity, which means that the
learning machine can always generate a model to fit the data
regardless how big and complex the data is. If this is indeed
the case, then the learning becomes inconsistent.

Vapnik argues in his book [12] that such a learning machine
is not scientific by applying the principle of falsifiability
proposed by Popper [13]. Under this principle, a necessary
condition to justify a model to be scientific is the feasibility of
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its falsification, i.e. the existence of an instance that cannot be
explained by the model even though the instance falls into its
modeling domain. In other words, a scientific learning machine
should not be able to fit all samples all the time.

The consistency concept provides a theoretical view to
explain the fundamental ideas in modern learning machine
design. The following explains this view by first explaining
the concept of over-fitting.

E. Over-fitting and cross-validation

As discussed above, consistency is to ensure that the error
rate seen on the training samples (empirical risk) is at the
same level as the error rate on future unseen samples (true
risk). To achieve consistency in learning, one cannot have a
learning machine with unlimited capacity. In other words, one
has to control the capacity of a learning machine.

When this control is too tight, a learning machine is unable
to produce a model whose complexity matches the complexity
of the data. The result is high training error rate. However, this
high error rate is more representative of the true error rate.
This situation is called under-fitting. Note that under-fitting
achieves consistency. However, it is not desirable because of
the high error rate.

On the contrary, when the control is too loose, the learning
machine can always produce a model whose complexity
matches the complexity of the data. The result is very low
training error rate, say almost 0. However, this low error rate
is unlikely representative of the true error rate. This situation
is called over-fitting. Over-fitting represents inconsistency in
learning. Fig. 6 illustrates the under-fitting and over-fitting
situations in view of the model complexity.

Fig. 6. Under- and over-fitting in view of model complexity

The most common way to check for over-fitting is cross-
validation. In k-fold cross-validation, the training samples are
divided into two subsets, one with k−1

k % of training samples
and the other with 1

k% of validation samples. This division
is repeated k times. The true risk is estimated as the average
error rate on the k sets of the validation samples.

While cross-validation is such a common practice, the no
free lunch theorem [6] warns about its misuse in practice.
Unless one can ensure that the data is somewhat a complete
representation for the future unseen samples, cross-validation
may provide no practical meaning in an actual application.

F. Learning algorithm design - Neural Network vs. SVM
In view of Fig. 6, one desires to implement a learning

machine whose capacity is limited by the model complexity
between under-fitting and over-fitting. To estimate under-fitting
and over-fitting, cross-validation can be used. With cross-
validation, one can then select a learn machine whose capacity

is at an optimal tradeoff between under- and over-fitting.
Design of a Nerual Network follows this idea.

For example, the capacity of a neural network is controlled
by its architecture. A single-layer network (e.g. Perceptron) is
limited to linear models. A two-layer network can model non-
linear functions. A multi-layer deep learning network [14] can
model extremely complex non-linear functions.

An alternative idea is to allow the learning machine to essen-
tially have unbounded capacity. Then in training, the simplest
model that fits the dataset based on some noise assumption is
selected. In other words, the model complexity is controlled
“on-the-fly” rather than in advance with a fixed capacity.
Choosing the simplest model is supported by the Occam’s
Razor principle. However, it is also important to note that the
fitness of a model depends on the noise assumption. With this
principle, the larger the noise is, the lower complexity of the
selected model would be.

The Support Vector Machine (SVM) [15] is a popular
approach employing the Occam’s Razor principle. An SVM
learning model is of the form: M(~x) = [

∑m
i=1 αik(~x, ~xi)]+b,

where ~x1, . . . , ~xm are the training samples. Each k(~x, ~xi) mea-
sures the similarity between the new input ~x (to be predicted)
and the training sample ~xi. Each αi ≥ 0 characterizes the
importance of the training sample ~xi. In SVM theory, model
complexity can be measured as C =

∑m
i=1 αi. Notice that

because the model is based on a collection of samples, its
capacity (or complexity) is not fixed in advance.

Let E denote the training error rate. An SVM algorithm tries
to minimize the objective of the form E+λC, i.e. finding the
lowest-complexity model with a minimal training error rate.
This approach is called regularization and λ is a regularization
constant [15]. Regularization is not specific to SVM. In many
modern learning algorithms, the regularization is applied to
alleviate over-fitting [15].

In an SVM model, training samples with a non-zero α value
are called support vectors (SVs) because they are the ones
actually used by the model. Let l be the number of SVs in an
SVM model based on n training samples. The quantity l

n can
also be seen as a measure of the resulting model complexity.
The smaller the quantity is, the more consistent the learning
is. For example, this idea of using the quantity l

n in practice
for building a delay test classifier was studied in [16] before.

III. LEARNING APPROACHES

The discussion above focuses on the two contrasting ap-
proaches, Neural Network and SVM, to illustrate the impor-
tance of capacity control. In general, a learning algorithm
can also be seen as employing one or a combination of four
basic ideas or their variations: (1) Nearest neighbor, (2) Model
estimation, (3) Density estimation, and (4) Bayesian inference.

For example, Figure 7 depicts a simple classification prob-
lem in a two-dimensional space. The idea for nearest neighbor
is that the category of a point (red or blue) can be inferred by
the ”majority” of data points surrounding it. Then, the trick is
in defining the ”majority” (see, e.g. [17]).

In a model based approach, one begins by assuming a
model structure. For example, in binary classification one can
assume a linear hyperplane to separate the two classes. A
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Fig. 7. Nearest neighbor vs. Model estimation

linear hyperplane in an n-dimensional space can be modeled
as a linear equation with n + 1 parameters, for example,
M(f1, f2) = w1f1 +w2f2 + b where w1, w2, b are parameters
to be estimated. An assumed model structure does not have to
be equation-based. The model can be a tree [18], a collection
of trees [19], or a collection of rules [20].

The third basic idea is to estimate the probability distribu-
tion of each class. For example, for each class of data points
shown in Figure 7, one can estimate its probability distribution
by assuming it is a two-dimensional Normal distribution,
i.e. the red samples with mean µ1 and covariance Σ1 as
N (µ1,Σ1) and the blue samples as N (µ2,Σ2). Then, for a
new sample, the two probability functions are applied and the
the sample is classified as the class with the higher probability.
The popular Discriminant Analysis [17] follows this idea. Of
course, the probability density estimation can be more general
than assuming a Normal distribution (see e.g. [15]).

The fourth idea is following the Bayes’ theorem. The Bayes’
rule states that:

Prob(class|~x) = Prob(class)Prob(~x|class)
Prob(~x)

= prior×likelihood
evidence

Let ~x = (x1, . . . , xn) be a sample to be predicted. Assume that
sample occurrence is uniformly distributed. Then, Prob(~x)
is a constant. In naive Bayes classifiers, it is assumed that
all features are mutually independent. Hence, Prob(~x|class)
= Prob(x1|class) · · · Prob(xn|class). Each Prob(xi|class)
can then be estimated using a frequency count on the fi
column of the dataset in Figure 2.

In practical application, the mutual independence assump-
tion rarely holds. Hence, more sophisticated algorithms are
designed to explore the mutual dependence (see, e.g. [21]).

A. Feature space and kernel method

As mentioned before, a learning tool takes a dataset like
Fig. 2 where the space of learning, or feature space, is defined
by the features. In kernel based learning (see, e.g. [15][22]),
a learning algorithm (for the most part of its operation) no
longer directly accesses the data matrix X shown in Figure 2.
This is illustrated in Fig. 8.

Fig. 8. Kernel function vs. learning algorithm

In kernel based learning, a kernel function k() is used to
measure the similarity between any pair of samples ~x, ~x′ as
k(~x, ~x′). A kernel function implicitly defines the feature space.
A kernel based learning algorithm relies on the relative infor-
mation provided by the kernel function to compute its learning

model. Hence, the samples do not have to be represented as
vectors as shown in Fig. 2 anymore, as long as a proper kernel
function k() can be defined.

B. Learning the feature space

The definition of the feature space affects the performance
of learning. Learning a feature space, either by learning a
suitable kernel or by learning a set of features, is not a trivial
task. For example, Gaussian Process (GP) [23] is an approach
that is capable of automatically scaling the input feature
values, i.e. weighting their importance. More recently, deep
learning network [14] is capable of automatically learning a
feature space using the intermediate layers of the network,
before building a learning model using the output layer. Such
a strategy has shown substantial improvements over previous
learning approaches on many applications [14].

C. Types of learning algorithms

SVM [15], tree based algorithms [18][19] and neural net-
work [14][17] are popular choices for classification problems.
For an unbalanced dataset where there are much more samples
from one class than from another, techniques were proposed
to rebalance a dataset [24]. However, if the imbalance is
quite extreme, rebalancing will not solve the problem and
the problem becomes more like a feature search problem
[25][26][27] than a traditional classification problem.

Popular regression algorithms include the straightforward
nearest neighbor algorithm [17], the least square fit (LSF)
[17], the regularized LSF [17], SVM regression (SVR) [15]
and Gaussian Process (GP) [23]. As an example, the work in
[28] studied these five types of regression algorithms in the
context of learning a model to predict the maximum operating
frequency (Fmax) of a commercial processor.

Clustering is among the most-widely used unsupervised
learning methods in data mining. Popular algorithms for
clustering include K-means, Affinity propagation, Mean-shift,
Spectral clustering, Hierarchical clustering, DBSCAN, etc.
(see, e.g. [2]). Novelty detection is another widely applied
unsupervised learning method. Novelty detection looks for
“novel” samples in a dataset. The one-class SVM is a popular
choice for novelty detection [15]. The result of clustering or
novelty detection can be quite sensitive to the definition of the
feature space in which the samples are analyzed.

Principal Component Analysis (PCA) [29] and Independent
Component Analysis (ICA) [30] are popular data transfor-
mation methods. For example, PCA can be useful for re-
ducing the dimensionality of a dataset by transforming a
high-dimensional X matrix into a low-dimensional X’ matrix.
PCA explores correlations among the input features to extract
uncorrelated new features called principal components. ICA
is similar to PCA except that instead of looking for uncor-
related components, ICA looks for (statistically) independent
components. Both PCA and ICA have found applications in
test data analytics [31][32].

Rule learning is another family of algorithms applicable to a
classification problem setting. A rule learning algorithm such
as CN2-SD [20] uncovers rules where each rule tries to model
a subset of the samples in a given class. For example, the work
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in [33] applies classification rule learning to identify features
that potentially cause design-silicon timing mismatch.

Association rule mining [34] can be thought of as rule
learning in an unsupervised context. In those applications, an
algorithm tries to uncover frequent patterns (represented as
rules) in the dataset. As an example, the work [35] employs
the frequency concepts from association rule mining to analyze
functional simulation traces.

IV. PRE-SILICON APPLICATION EXAMPLES

This section includes the discussion of example applications
in three areas: functional verification, physical verification, and
timing analysis. The discussion focuses mostly on functional
verification to echo some key concepts discussed before.

A. Functional verification

Functional verification starts with a verification plan, spec-
ifying the aspects of the design to verify [36]. In addition
to manually-written direct tests, tests can be generated by
constrained random test generation, which is guided by con-
straints and biases specified in a test bench (or test template).
Verification quality is measured by coverage metrics.

Design is an evolutionary process. From one revision to the
next, new features are added and/or bugs are fixed. Functional
verification evolves accordingly. Assets accumulated through
the verification process can include the important tests and test
templates. They can be collected into a regression test suite.

Fig. 9 provides an abstract view of functional verification
flow with two data mining components, L1 and L2 that can be
added [37]. The G can be thought of as a constrained random
test generator that produces the test set T . The simulator Sim
simulates the tests and produces the result R that is evaluated
in the step E. The evaluation can be based on coverage or bug
excitation. The set of the important tests (or test templates),
denoted as T ′N , is selected into the test suite.

Fig. 9. Two learning components L1, L2 that can be added to a simulation-
based functional verification flow

The first component L1 can be called a filtering component.
Its goal is to filter out unimportant tests before the simulation
and in turn, to save simulation cost.

The second component L2 is called a feedback component.
Its goal is to feedback knowledge learned from the result R for
improving the generator, for example to adjust the constraints
to better target a coverage point. While the focus of L1 is on
the efficiency, the focus of L2 is on the quality of the tests.

1) The test filtering component: The early work in [38]
proposed using novelty detection to implement the filtering
component. A novelty detector can be learned using the unsu-
pervised learning version of the SVM, the one-class algorithm
[15]. Let Tdata = {t1, . . . , tn} be the tests that have been
simulated. The learning is based on Tdata to build a novelty
detector Dn. Then, in application, the importance of a new
test t is predicted by Dn(t). If t is predicted non-novel, then
the test is filtered out, i.e. not important.

In functional verification of a processor or SoC, a test
is a sequence of instructions, i.e. an assembly program. As
mentioned before with Fig. 2, a learning tool takes a dataset
in matrix form. Hence, one has to bridge this gap, for example,
by using the kernel method discussed in Section III-A.

Fig. 10. Main challenge of using a kernel function

For the learning to be meaningful, a kernel k() has to
reflect what is really happening in the actual coverage space
of interest. For example, in Fig. 10 suppose we have a kernel
k() calculating a similarity between two programs as a value
in [0, 1] where 0 means most dissimilar. Then, in the example,
one should have k(t1, t2) = z for some z ∈ [0, 1] while have
k(t1, t3) = 0 and k(t2, t3) = 0. This is because t1 and t2
overlaps in the coverage space and they do not overlap with
t3. In other words, the kernel somehow has to predict how two
tests overlap in the coverage space of interest, before they are
simulated and their actual coverages are known.

For the filtering component to be effective in application,
however, the kernel does not have to be close to 100% accurate
[39]. In fact, requiring a 100% accurate kernel would not
be feasible, since learning a kernel accurately capturing the
similarity relationships between tests in terms of their actual
coverages can be quite challenging [41].

A recent work in [40] proposes implementing a kernel
function based on a fast estimation of the coverage. The idea
is to pre-build a coverage database using single-instruction
and short multi-instruction samples. The coverage of an ac-
tual instruction sequence is then estimated by accessing the
information from the database (without simulation). The kernel
calculates the similarity between two programs using their
estimated coverage on a set of coverage points. This set,
however, is dynamically adjusted to remove those points that
have been frequently covered during the actual simulation.

Fig. 11. An example result based on a commercial processor

The approach was applied to a dual-thread low-power
processor [40]. Fig. 11 shows a typical result. The application
flow is iterative. For example, a large set of N tests are
generated in total. Initially, 10 random tests are selected to
be simulated and a novelty detector is learned based on these
10 tests. The detector is used to select the next 30 novel tests
to simulate. Then, a novelty detector is learned based on the
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total 40 tests. This process repeats until a desired coverage is
achieved or it runs out of tests.

In Fig. 11, each test is a 50-instruction program generated
for verifying a complex fixed-point unit. With the novelty
detection, only 310 tests are required to achieve the desired
coverage, compared to 6160 tests without novelty detection.
Hence, the saving is about 95% which translates into 19 hours
of simulation time using the server farm (or 1 week if using
a single server). Overall, the approach can achieve 80-96%
saving on various scenarios for verifying the processor [40].

2) The test feedback component: Fig. 12 depicts the basic
ideas for implementing a feedback component discussed in
[42][43]. To learn from simulation results, i.e. traces, one
needs to have the results divided into two classes of sam-
ples. For example, one class comprises those traces hitting a
coverage point or exercising a bug event (positive) and the
other comprises the rest (negative). Then, the next challenge
is how to encode those traces.

Fig. 12. Implementing the feedback component

Fig. 12 shows that a trace is encoded with features which
can be, for example, state variables from architecture and/or
micro-architecture specifications. The work in [42] also dis-
cusses features based on the instructions. With each encoding
scheme, a trace is represented as a sequence of vectors where
each vector tells whether the features are activated in the
respective cycle or not.

The challenge is that if we treat each trace as a sample,
each sample is represented with a matrix whose dimensions
are defined by the number of features and number of cycles.
The dataset is three dimensional (because of the time aspect)
rather than two dimensional as shown in Fig. 2. In association
rule mining, one way to consider the time aspect in mining is
sequence mining and a key idea is to employ sliding windows
[44][45] to restrict the time aspect.

Sliding windows convert a 3-dimensional dataset into 2-
dimensional [42]. Then, rule learning can be applied to extract
rules that best differentiate the positive samples from the
negative samples. As mentioned before in Section III-C, rule
learning can be supervised [20] or unsupervised [34].

Because we have two classes of samples, the problem is
supervised. However, one issue is that we usually have many
fewer positive samples than negative samples, because in most
cases, we are interested in understanding how to activate a
rare event. Conceptually, this issue can be resolved in two
steps [43]. The first is to construct a set of ranked hypotheses
(candidate rules) using the positive samples. Then, the negative
samples are used to filter those candidates. The work in [43]
discusses that the quality of learning can very much depend
on the number of positive samples. Hence, even though the
simulation data is abundant, the quality of the data is reflected
mostly in terms of the positive samples. In other words, more
data does not always imply easier learning.

Fig. 13. An example of applying the feedback component

The feedback component has one major limitation: If one
is interested in hitting an event that is never covered, then
there is no data to learn from. Fig. 13 shows an example to
explain how the learning could be applied when the initial
simulation had zero coverage on the events of interest [43]. In
this example, the events to cover were E1 to E6. Simulation
of more than 30K tests generated from a given test template
could not cover any of them.

For this example, domain knowledge was applied to recog-
nize that signal values on C and S0 to S5 were highly related
to the activation of the six E’s events. Hence, learning was
used to learn about the properties related to C and S0 to S5.
Fig. 13 shows that after one iteration of learning, the modified
test template could cover 4 out of the 6 events (with 1K new
tests). By learning on the new positive tests, the modified test
template could cover all 6 events with 100 tests.

3) Discussion: The filtering and feedback components il-
lustrate the two typical application scenarios, one where the
results are used by another tool (simulation) and the other
where the results are interpreted by a person (for modifying
the test template). In both scenarios, domain knowledge is
essential for the learning. In the filtering component, domain
knowledge is applied in the kernel design. In the feedback
component, domain knowledge is reflected in the initial set of
features and also in the selection of relevant signals when the
events of interest have zero coverage to begin with. During
the learning, the important signals used in the kernel and the
important features captured in the rules become part of the
learned knowledge in the KD process.

4) Other pointers: The filtering and feedback components
are examples of applying data mining in functional verifi-
cation. There are other important applications in verification
and validation. For example, the team at IBM Haifa pioneers
many works for improving functional test generation (see e.g.
[36][46]). Another important area is assertion generation. Re-
cent results can be found in [47][48]. The work in [49] studies
of the question of inferring design specifications from design
behaviors with many theoretical insights. Another important
area is debug. For example, the work in [50] pioneers the
use of machine learning techniques to overcome challenges in
post-silicon debug. System performance modeling is another
important application area. Recent results can be found in
[51][52], where the work in [53] also emphasizes the use
of domain knowledge. Modeling thermal behavior and analog
behavior are also important applications (see e.g. [54][55]).

B. Physical verification - layout hot spot detection

Layout hot-spot detection is another area where machine
learning finds applications [56]. Traditionally, hot spots are
detected through lithography simulation which is very slow or
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a pattern matching based tool which is fast but hard to maintain
accuracy. The idea of applying machine learning is to achieve
extra-fast hot-spot detection with improved accuracy over the
pattern matching tool [57].

Fig. 14. Learning in lithography simulation context [58]

Figure 14 depicts the setup proposed in an early work [58]
where lithography simulation is used as the golden reference to
learn from. The training data comprises good layout samples
and bad layout samples where good and bad are determined by
the lithography simulation. These samples are extracted from
a layout by applying Raster scanning, i.e. moving window
with overlapping boundary [58]. The learning model M() is a
classifier that when applied to a future layout through Raster
scanning, can identify the windows that are bad.

Fig. 15. Fast prediction of variability (hot spots)

SVM was used in [58] for learning the binary classifier.
However, similar to the filtering component [40], the main
challenge for learning is in defining the feature space. The
work in [58] used the Histogram Intersection (HI) kernel and
experimentally showed its effectiveness. Another issue is the
selection of the window size in Raster scan, which in [58] the
size was determined experimentally with cross validation.

To illustrate the application of the classifier M(), Figure 15
shows a result comparing the prediction accuracy of a model
M() to the lithography simulation. Most of the high variability
areas (hot spots circled) identified by the simulation were
correctly identified by the model M .

1) Other Pointers: A more recent work in [57] proposed
a pre-learning layout analysis approach to extract relevant
features and showed great improvement in prediction accuracy.
A benchmark suite was constructed later to facilitate research
in the area [59]. A recent good review of latest research in the
area can be found in [56].

C. Design-silicon timing correlation

In design-silicon timing correlation, the idea is to learn from
timing test data to uncover issues in timing analysis [60]. Test
data is represented as a set of paths and their measured timing
on silicon chips. The mismatch is characterized as the dif-
ferences between silicon-observed path timing and predicted
timing by timing analysis. The problem can be approached
with binary classification [60] or with regression [61].

In this type of analytics, each path is encoded with a
set of features. These features are our hypothesis basis for
the reasoning. In the early works [60][61], the goal was to
rank features, i.e. identifying which features are important
for explaining the mismatch. In later works [33][62], rule

learning methods were applied to discover rules (combinations
of features) for explaining the mismatch. The methodology is
similar to the feedback component discussed above.

In [62], a rule learning methodology is applied to a high-
performance 4-core processor. The core question is to answer
why a large number of timing analysis predicted critical paths
are not critical on silicon, while a number of silicon critical
paths are not predicted as critical. After some effort of pruning
the test data, in the final analysis, the first set contains more
than 12K paths while the second set has 158 paths. There
are 96 features defined in the methodology, including features
related to basic path characteristics, information from timing
report, usage of various Vt devices, usage of cell types, RC
information, usage of MUX cells, and location of the path.

Applying the methodology discovered several rules to ex-
plain 115 silicon critical paths. Analysis of the rules pointed
to usage issues of several custom cell types. Hence, actions
could be taken to improve those 115 paths [62].

Fig. 16. Diagnose unexpected timing paths

Figure 16 shows another example applying a similar
methodology to another commercial processor [1]. The left
plot shows two clusters of paths: those whose silicon timing is
faster than the predicted timing, and those whose silicon timing
is slower. These paths belong to the same design block and
the mismatch result was totally unexpected. The right shows
one learning rule uncovered by the methodology. This rule
basically says that if a path contains a large number of layers-
4-5 vias and layers-5-6 vias it would be a slow path. Later it
was confirmed that the issue causing the slow paths occurred
on metal layer 5.

1) Other pointers: Timing analysis is not the only area
where test data can be utilized for improvement. Another
common approach is to identify systematic defects and use
that information to improve design, for example to diagnose
layout issues. For example, the works in [63][64][65] are
recent results reported along that line of research.

V. POST-SILICON APPLICATION EXAMPLES

Three example application areas are discussed in this sec-
tion: yield improvement, customer return modeling, and test
cost reduction. The discussion focuses more on the yield
improvement to echo some key concepts discussed before.

A. Yield improvement

Figure 17 shows a yield issue analyzed in [66]. The data
is collected from an automotive product line which is a tire
pressure monitor sensor. Figure 17 illustrates that the yield
spreads widely across 2000+ wafers. Note that this result seen
in Figure 17 was already after one design revision and multiple
test revisions attempted to improve the yield [66].
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Fig. 17. Yield distribution plot based on 2000+ wafers

The goal is to determine if the yield can be improved by
adjusting some process parameters. More than 130 process
parameters are measured on 5 sites on a wafer [66]. They are
usually called E-tests (or class probes). Failing dies on each
wafer are organized into test bins. The essence of the problem
is to search for strong correlations between E-tests and the
failures seen in testing.

A common practice in yield analysis is to check the corre-
lation between E-tests and the number of fails in a test bin or
due to a test (a test bin collects fails from related tests). For ex-
ample, suppose for an E-test its average measured value over
5 sites on a wafer, across all n wafers, are ~e = {e1, . . . , en}.
On the other hand, the numbers of fails, based on a test or test
bin, across the wafers are ~t = {j1, . . . , jn}. One calculates the
correlation Corr(~e,~t) between these two vectors.

Fig. 18. Examples of the best results in the initial analysis

Fig. 18 shows examples of the best results with the common
correlation analysis practice. Every dot represents a wafer. Bin
26 is the bin with the largest number of fails while Test A is
a test in the bin. The correlations are not strong enough to
convince the foundry to implement a process change.

The work in [66] proposes various ways to perform “deep”
correlation analysis beyond the common practice. The deep
analysis is based on two key observations.

First, correlations between E-tests and the failures can exist
beyond the number of fails and the average value over 5
sites. These two are aggregate statistics. Other more detailed
statistics can be used. For example, on the E-test side, a
correlation can be to the value on an individual site or average
over a subset, but not necessarily to the average over all sites.

On the failure side, a correlation can be to how a test
decides the failures. For example, a test can have multiple test
values. A correlation can be to one of the particular test value.
Moreover, a correlation can be to the test value distribution
seen on a wafer, for example to some statistics derived from
the distribution such as its mean, variance, skew, or kurtosis.

On the failure side, there can be two additional aspects to
consider. A correlation can be to a subset of dies on a particular
region of a wafer. This is a spatial consideration. Further, a
correlation can be to a subset of wafers produced in a particular
time window. This is a temporal consideration.

The second observation is that, the word “correlation”
commonly referred in practice does not necessarily mean
“statistical correlation.” Recall that the ultimate objective is to
discover process parameter changes that can improve the yield.
Consider an extreme case where a test t has only two values
{v1, v2} where v1 means pass and v2 means fail. Suppose
there is a process parameter p such that p > u1 implies t = v1
and p < u2 implies t = v2 for some u1 > u2. If one runs a
statistical correlation check between t and p, there might not be
a high correlation. However, if one adjust the parameter to the
u1 corner, more dies would pass. This simple case illustrates
that the search should also consider searching for a strong
association between an E-test and a failure type. We use the
term association because the concept can be thought of as
similar to that being searched in association rule mining [34].

Fig. 19 shows two examples of improved results based on
the deep analysis methodology proposed in [66]. In the left
plot, the number of X4 type of fails is correlated to a parameter
PP1. Note that X4 denotes a particular test value of test A
shown in Fig. 18. In the right plot, the variance of measured
values on another test D is correlated to PP1.

Fig. 19. Examples of improved results with deep analysis

Fig. 20 shows an example of considering the temporal
aspect. In this example, parameter PP5 is correlated to the
number of X1−X3 types of fails. The wafers are selected into
two subsets, colored as green and blue dots. The separation
is based on the time of their production. Additionally, not all
wafers are included.

Fig. 20. An example of uncovering temporal effect

With the deep analysis methodology [66], five parameter
(PP1-PP5) changes were recommended to and accepted by
the foundry. These changes are implemented as two process
adjustments, ADI #1 and ADJ #2 whose effects are validated
through manufacturing lots as shown in Fig. 21. The box plot
shows the mean and the 25%-75% quantile spread of the yield.
In the figure, we observe that individually each adjustment
improved the yield while combined they achieved an even
better improvement. These results were confirmed on actual
silicon and hence, both adjustments were applied in mass
production afterwards.
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Fig. 21. Silicon validation of recommended process adjustments

1) Discussion:: The yield example discussed above re-
emphasizes the point that analytics is not a one-shot run, but
an iterative search process. Refer to the KD process in Fig. 3
again. In each iteration, the analyst prepare the datasets to
determine if a particular type of correlation or association
exists. Then, the results from an analysis tool are evaluated
by the analyst to make such determination.

A key reason why the product team failed to discover the
adjustment and the work [66] did, was due to the fact that
the approach in [66] examined the data from the perspectives
(ways to prepare the datasets) that were never considered by
the product team. This shows that the effectiveness of data
mining is not just about the analysis tool, and can largely
depend on the methodology to prepare the datasets.

B. Customer return modeling

Customer returns are parts that pass all the tests before
shipment but are determined as failing parts by the customer.
Customer returns can be called customer quality incidents
(CQIs) because returning by the customer does not necessarily
mean that the parts are defective at their shipping time. For
CQI analysis, one way is to search for test models that can
screen those parts using test data prior to the shipment.

In a sense, CQI analysis involves (1) searching for abnor-
malities in the data and (2) associating the abnormalities with
the returns. There can be two types of abnormalities: (1) a
CQI is an outlier in a test space defined by one or more tests
[25] and (2) a CQI is located in a region of wafer showing an
abnormal wafer pattern [67].

For example, if the goal is to project a CQI as an outlier, the
search can be to find a test space in which the CQI is classified
as an outlying part. If there are k tests, the naive search space
comprises all possible 2k − 1 test spaces. Therefore, reducing
this search space is a key consideration in practice [68].

As it will be discussed later, the definition of an “outlier”
can be quite subjective. Hence, one of the major challenges in
CQI analysis is to validate an outlier model [25][67].

Fig. 22. Predicting CQIs via an outlier model

In practice, there are two ways to validate a model. For
example, Fig. 22 shows that a 3-dimensional outlier space is
learned based on one CQI, which also projects another CQI as

an outlier. The second CQI provides a validation of the model.
When the model is applied to a sister product, it can capture
5 more CQIs as outliers, hence providing further validation.
These products are SoCs sold to the automotive market [67].

Fig. 23 shows another example where the outlier model is
validated through design knowledge and failure analysis (FA)
report [68]. In this example, 10 CQIs are analyzed. We knew
that they all failed due to some defective DC pins on the sensor
interface. 7 out of 10 CQIs can be projected as (marginal)
outliers in a test space comprising 2 DC line tests.

Fig. 23. Validating a CQI model via FA report

1) Discussion:: In practice, implementing an outlier anal-
ysis approach to model and screen fails is not as simple as
showing the results in Fig. 22 and Fig. 23. First, preparing the
data for the analysis can consume much of the engineering
efforts. For example, there can be missing data, corrupted
data, or unavailable entries in the data. Ensuring data integrity
can be a rather tedious task, taking much more time than
the analytics. Second, while models like Fig. 22 and Fig. 23
provide evidences that they can be useful to screen the parts,
whether they can be implemented and applied in an actual
test flow can still be in question. For example, such a model
involves yield loss, i.e. to screen a bad part, some good parts
are also screened out. One needs to carefully estimate the
tradeoff between yield loss and quality improvement before a
model can be adopted. Moreover, impacts to the existing test
flow need to be considered. As discussed in a recent paper
[69], it could take years of extensive study to evaluate the
impacts on a variety of production flows to deploy a test data
analytics methodology in practice.

C. Test cost reduction

Another important area of test data analytics is test cost
reduction. Test cost reduction can take place within a test stage
[70] or across multiple stages [71]. In test cost reduction, one
desires to remove a test [70], remove a test insertion, or reduce
the parts going through an expensive test stage like burn-in
[71]. This means that, for all those parts that are supposed to
be captured by the removed tests or removed test stage, now
they need to be screened by other tests or in an earlier test
stage. In other words, the fundamental problem can be viewed
as to predict a future fail in the test flow by constructing a test
model such as an outlier model [69].

The earlier paper [1] explains that test cost reduction can be
quite challenging if one desires a very small DPPM (defective
parts per million) impact. For example, if the target DPPM
impact is 10, this means that at most there can be 10 defective
parts (per million) being miss-predicted. Defective parts often
occur at the tail of a test distribution and the requirement
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demands a model to capture the behavior of the tail in high
accuracy, which can be difficult [1].

Fig. 24. A challenge in burn-in cost reduction

Fig. 24 illustrates another issue which can make test cost
reduction challenging. This is in the context of burn-in reduc-
tion. Each dot represents a part. The x,y of a part represent
their measured value based on the same test, before and after
the burn-in. The plot shows that there are many parts (within
the big red circle) whose test values before the burn-in are very
normal, but those values after the burn-in become abnormal.
This shows that the burn-in does alter the characteristics on
those parts. If one does not have an earlier test (e.g. a wafer-
level stress test) that can alter the characteristics in a similar
way, it become questionable why a test model built on other
tests can even predict those fails.

VI. ON THE ROBUSTNESS OF DATA ANALYTICS

In the applications discussed above, there are two types of
analyses involved: correlation analysis and outlier analysis. In
this section, we discuss the robustness issue of a data mining
tool using these two types of analyses as examples.

An analysis tool typically computes some statistics as its
outputs, for example in correlation analysis a correlation
number and in outlier analysis an outlier score. In a KD
process, it is up to the user to determine how meaningful these
statistics are. Because this determination can be subjective, the
KD process is not robust. This determination can further be
complicated by the enormous search space. Consequently, it
is difficult to know if the best models and statistics seen in
hand are in fact the best that can be provided by the data.

To alleviate the robustness issue, one would desire a tool that
by its own analysis can report “no model found.” For example,
in correlation analysis, the tool can report no correlation and
in outlier analysis, the tool can report that there is no outlier.

Take correlation analysis as an example. Before adjusting
a process parameter, it is important to ensure that there is no
correlation between the parameter and other test results not
intended to be affected. This is to ensure that the adjustment
would not cause an unintended yield loss on another test [66].

A. Establishing no correlation

In theory, showing no correlation can be approached
by showing statistical independence. Rényi (see [72][73])
proposed an equation to capture statistical dependence:
Q(P (x, y)) = supf,g Corr(f(x), g(y)), where x and y are
two random variables and f and g are Borel measurable and
bounded functions (The ”sup” denotes the least upper bound
and “Corr” denotes the correlation calculation function). Rényi
shows that the quantity Q(P (x, y)) = 0 implies statistical
independence. Notice that independence is established based
on considering all possible functions f and g.

If we modify Rényi’s equation with matrices X,Y , we
get: CC(X,Y ) = maxf,g Corr(f(X), g(Y )), where f and
g are some functions transforming X,Y into two vectors.
For example, in canonical correlation analysis (CCA) [3] the
two matrices X,Y are transformed with two weight vectors
wx, wy into Xwx, Y wy , respectively before their correlation
is calculated with Corr(). Hence, maximizing based on f, g
becomes maximizing based on the weight vectors. Note that
CCA(X,Y ) = 0 implies there is no linear correlation, but
non-linear correlation can still exist.

To extend f, g to be non-linear functions, one approach is
kernel CCA (KCCA) [22]. However, it turns out that KCCA is
not practical for showing statistical independence. The authors
in [75] show that with a universal kernel such as a Gaussian
kernel [22], KCCA result is always 1, independent of the
dataset. Then, the authors in [76] show that with regularization
(the concept is discussed in Section II-F) and universal kernels,
KCCA(X,Y ) = 0 iff X,Y are independent. Regularized
KCCA requires user to choose a regularization parameter γ.
Experimentally, we find that this subjectivity makes it hard to
interpret the results in practice [66].

In the yield analysis work [66], a different approach is taken
following the idea proposed in [77]. The idea is to approximate
KCCA by (1) running Kernel Principal Component Analysis
(KPCA) [78] to extract the first p principal components in
the feature space and (2) running CCA directly in the feature
space with the p principal components. The value p is then
used as the model complexity measure.

Fig. 25. An example of checking for no correlation

In practice, the correlation is checked up to a certain p value
(i.e. one cannot determine no correlation in an absolute sense).
Fig. 25 shows an example (p = 17) of risk evaluation in
the yield application discussed above, employing the kernel
correlation check. The plot shows both CCA and KCCA
results on various test bins, as how each number of fails
correlates to process parameter PP1 (which was adjusted).

Bin 31 shows a substantially higher risk than others. On the
right plot (each dot is a wafer), the average test value of test
E (the only test in Bin 31) are plotted against the average PP1
measured value. Risk is contained by seeing that most of the
test E values are far from the test limits and moving PP1 to
the right corner (e.g. as suggested by Fig 19 above) would not
move the test E values up or down much.

B. Establishing no outlier

Traditionally, outlier analysis is done by assuming that
the data follows a known distribution, such as a Normal
or Exponential distribution. In practice, this approach is not
robust because the data almost never exactly matches an
assumed distribution. A small error in modeling can introduce
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a large error in modeling the tails of a distribution, and the
tails are most important with respect to outlier analysis.

Take parametric outlier screening [79][80][81] as an exam-
ple, which is commonly applied for automotive products due
to their extremely high quality requirement [82]. Figure 26
illustrates three major components in outlier modeling.

Fig. 26. Traditional outlier analysis vs. consistent outlier analysis

The modeling begins with N samples such as parts from
the same wafer. An outlier method is applied to calculate an
outlier score for every sample. This results in an outlier rank.
Then, a threshold is selected to separate samples into outliers
and inliers. The process is inherently subjective. The choices of
the sample set, the outlier score calculation method, and the
threshold can all impact the outlier analysis outcome. Even
with a modern novelty detection algorithm such as one-class
SVM [83] where the threshold is preset at 0, another parameter
ν, which represents an upper bound on the fraction of outliers,
still requires user input.

To reduce the subjectivity, the work in [84] proposes a
concept called consistency check which is labeled in Fig. 26
as the 4th component.

In the original outlier score calculation, each die mi receives
a score si based on the population of dies on the wafer. In
consistency check, each die mi receives a vector of scores
si1 , . . . , siW where each sij is calculated based on the popu-
lation of wafer j (assuming in total W wafers). In this way,
a consistent threshold is defined as a threshold such that an
outlier has every score greater than every corresponding score
of an inlier. A minimum consistency threshold is the consistent
threshold that results in the maximum number of outliers.

The work in [84] shows that in practice, data from many
tests show no consistent outlier, i.e. cannot find a consistent
threshold. Hence, it provides a way to determine that there is
no outlier based on a test, which can be useful to facilitate the
search process in CQI analysis discussed above.

The intuition behind consistency check is that the “gap”
between an outlier and an inlier has to be larger than the noise
seen in the data [84]. In test, outlier analysis is often wafer
based. Hence, the noise can be measured based on wafer-
to-wafer variations. However, this means that in consistency
check, one has to first identify systematic shifts of a test
value across wafers before applying the consistency check.
Otherwise, a systematic shift would be treated as noise in
the consistency check, which can be undesirable. For this
reason, the work in [84] also implements a clustering based
approach to detect systematic shifts across wafers, using the
ideas suggested in [85][86].

C. Other pointers

Test data analytics is a rich field with some applications
starting much earlier (e.g. [87]) than those discussed above.

For example, outlier analysis and adaptive test have been hot
topics in test for many years [69][88]-[92]. Applications to
analog/RF devices [93]-[96] are popular. Optimizing cost and
quality based on wafer modeling is another rich research topic
[97]-[102]. Yield learning and test chip optimization are also
important applications with analytics [103][104]. Analyzing
system-level test data is another important topic emerging in
recent years [105]. Again, this list is incomplete. They are
simply pointers to some of the research teams in the field.

VII. SUMMARY AND FUTURE RESEARCH DIRECTIONS

This paper emphasizes on the view that learning from data
is a process of enhancing one’s domain knowledge using
the data. Because of the involvement of domain knowledge,
learning from data is subjective to the knowledge. And because
of this subjectivity, one would not be 100% sure that the
conclusion drawn from the findings is always “correct.” Hence,
the goal of data mining is not to guarantee 100% a conclusion,
but to discover evidences strong enough to support an action
with minimal subjectivity in the discovery process.

The question is not about whether one needs domain knowl-
edge, but about how much knowledge is required. This view
is not only based on experience, but also consistent with the
no-free-lunch principle fundamental to machine learning [6].

In practice, domain expertise plays a critical role in devel-
oping or using an analytics tool. A domain expert may develop
a new tool or customize an existing tool to facilitate the KD
process for an application context. Developing the methodolo-
gies to facilitate the dataset preparation and meaningfulness
determination steps can also be largely empirical based on the
domain expert’s experience.

The KD view and the search perspective are based on the
specific applications from our experience. They should not be
taken as universally applicable in all applications in EDA and
test. Further, while in this paper we discuss several applica-
tions somewhat reaching production level successes, it should
not be taken directly that they are ready for a commercial
implementation or production deployment. Additional research
might be required to reach that stage.

Based on the experience, there can be four directions for
future research: (1) Section VI discusses some initial works
to address the robustness issue in data mining. Much research
is required to develop robust tools to support a robust KD
process. (2) While one expert following a KD methodology
with data mining tools can deliver promising results, it does
not mean that the methodology is easily implemented or can
be used effectively by other people in a company. Again, one
reason for this scalability difficulty is due to the subjectivity in
the KD search process - different people may involve different
subjectivities. Hence, minimizing subjectivity in KD is crucial
to enable its usage scalability.

(3) As mentioned before, design is an evolutionary process.
Data mining should take advantage of this evolution. This
means that knowledge should be learned, accumulated, and
reused. However, this requires the development of a formal
representation of knowledge in each specific application do-
main. (4) In a sense, deep learning [14] reduces subjectivity
by asking a learning machine to figure out what the important
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features are. This is different from the KD view where the
search for important features is carried out iteratively, outside
the learning tool box. How to employ the deep learning
concept to provide more capability to the learning tools in
a KD process to minimize the number of iterations in the
search can be another interesting research direction. However,
because deep learning usually requires a rather large amount
of data, how effective it can be with limited data (such as the
applications discussed in this paper) remains to be studied.
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