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ABSTRACT
This paper describes two separate learning flows for improv-
ing the efficiency of simulation-based design analysis. Ma-
chine learning concepts and methods are explained in the
context of realizing the two learning flows. Experimental
results are presented to demonstrate their feasibility. Gen-
erality of the proposed learning flows is illustrated using the
kernel-based learning concept.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids

General Terms
Simulation
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1. INTRODUCTION
Circuit simulation is indispensable for verifying the ana-

log behavior of a design. For assessing the uncertainty of
design behavior over process variations, Monte Carlo circuit
simulation is one of the most popular approaches. How-
ever, circuit simulation can be time consuming. Hence, for
a large and complex design, Monte Carlo circuit simulation
can become prohibitively expensive.

Figure 1 depicts a functional view of the Monte Carlo style
design analysis considered in this work. In this view, the de-
sign under analysis is seen as a mapping function f(). Inputs
to the function comprise two sets of random variables. First,
there are random variables modeling the input variations in
the input space X. Furthermore, there are random variables
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Figure 1: Functional view of a design analysis

modeling parametric variations associated with the compo-
nents of the design. This component space is denoted as
C. The function f() is a mapping from (X, C) to the out-
put space Y, i.e. f : (X, C) → Y. The function f() can
be computed through simulation. The objective of a Monte
Carlo style design analysis is to evaluate the output varia-
tions with respect to the input variations from both the X
space and the C space. For example, the analysis might
be used to assess the performance yield of a design based a
given process variation model.

As a specific application example, consider Monte Carlo
circuit simulation of an analog design represented as a netlist
of N transistors. The input space X comprises a set of
possible input waveforms over a time period t, i.e. each
sample xi ∈ X is a waveform represented as a vector of
voltage values over t time steps. Each component random
variable models the size variation of a transistor, i.e. each
sample ci ∈ C is a vector of N transistor sizes. The objective
of the analysis is to assess the behavior changes of the output
waveforms due to the transistor size variations.

Figure 2: Formal view of the fundamental problem

Figure 2 provides a formal view of the fundamental prob-
lem considered in this research. In a Monte Carlo analysis,
suppose that m samples c1, . . . , cm are drawn from the C
space. Moreover, n samples x1, . . . , xn are derived from the
X space. For example, these n samples can each be a wave-
form over the same time period [0, t]. As another example,
circuit simulation is over a period [0, T ] and the period is di-
vided into n successive time frames [0, t1], [t1, t2],. . .,[tn−1,tn]
where x1, . . . , xn are waveforms from the n time frames. In
the setting of Figure 2, every input sample, represented as a
2-tuple (xi, cj), produces a corresponding output y{i,j}.



Suppose that with respect to the design analysis task at
hand, a subset of the l outputs ŷ1, . . . , ŷl would be sufficient
to represent the relevant output space. Let them be called
the essential outputs. In Figure 2, a checker is applied on
the n × m outputs to identify the l essential outputs. As-
sume l� n×m. This assumption of having a small subset
of essential outputs is usually practical. As a simple exam-
ple, in a Monte Carlo style analysis of a circuit performance
parameter (e.g. timing), the analysis goal could be to verify
the range of the parameter. Then, among all the outputs,
only two are essential: the min and the max.

Let the input samples required to produce the essential
outputs be called the important input samples. Ideally, one
desires to simulate only the important input samples to save
simulation cost. This idea is only feasible if one has a way
to predict the importance of an input sample or a way to
predict its output. This leads to the fundamental problem:

”How to predict the outcome (i.e. either the im-
portance or the actual output) of an input sample
before the sample is simulated?”

1.1 Predicting the outcome of an input sample

Figure 3: Learning to predict important inputs

Figure 3 and Figure 4 illustrate two approaches to the
fundamental problem. Each approach is based on an iter-
ative learning flow. In Figure 3, learning is based on the
simulation results known in the current iteration, including
both the known important and unimportant input samples.
Once a learning model is constructed, it is used to predict
the importance of input samples in the next iteration.

Figure 4: Learning to predict the outputs

In Figure 4, learning is for predicting the output of an
input sample. The learning model comprises two parts: (1)
a method to decide if an input sample is predictable, and
(2) a predictor that produces the predicted output. Learn-
ing the predictor is based on the simulation results obtained
so far, including the input samples simulated and their out-
puts. Note that while Figure 4 can be used to predict the
importance of an input (by predicting its output), the learn-
ing flow can also be used to bypass simulation for those pre-
dictable inputs. This represents another way to save simula-
tion cost. For example, given a circuit comprising multiple
blocks, Figure 4 can be applied to one of the blocks and
bypass simulation of some inputs to the block.

The rest of the paper is organized as follows. Section 2
introduces the related works. Section 3 states the concept of

kernel-based learning. Section 4 and Section 5 describe the
details and experimental results of the two learning concepts
illustrated in Figure 3 and Figure 4, respectively. Section 6
concludes this paper.

2. RELATED WORKS
Existing research for improving the efficiency of simulation

based design analysis can be divided into two categories. In
the first category, the analysis focuses on component vari-
ations from the C space without explicitly considering the
variations in the X space. In the second category, the anal-
ysis focuses on the input variations from the X space and
ignores the variations in the C space.

For example, one notable area of research is Static Sta-
tistical Timing Analysis (SSTA) [2][3]. In SSTA each delay
element (equivalent to a component in Figure 1) is modeled
as a random variable according to process variations. De-
lay elements in SSTA are usually assumed to be pin-to-pin
delays of a cell [3]. Circuit timing is a function of a set of
delay random variables under the worst-case assumption on
the input pattern space X. The analysis is static because
variation in the input pattern space is not considered. In
SSTA, Y = f(−,C) is computed by propagating the delay
distributions directly through the circuit. It does not involve
random sampling of the C space and hence, avoids the high
cost of Monte Carlo simulation of random samples.

The same idea of propagating probability distributions
can be applied to low-level circuit analysis where the random
variables are based on basic circuit elements such as resistors
and capacitors. In low-level circuit analysis, the operators
involved are no longer restricted to addition and maximiza-
tion as those used in SSTA. Hence, the problem becomes
more complex. For example, the work in [4] applies Polyno-
mial Chaos Theory (PCT) [5] to low-level circuit analysis.
In a PCT framework, distributions are modeled with orthog-
onal polynomials to facilitate their propagation through the
circuit equations [4].

The work in [6] retains the idea of random sampling with
Monte Carlo simulation. To improve efficiency, supervised
learning techniques are applied to predict the irrelevant ran-
dom samples from the component space C. These irrele-
vant samples are discarded from simulation. In more recent
works [7][8], advanced learning techniques are applied to de-
velop an efficient framework for statistical analysis of circuit
performance parameters. The framework is intended and
optimized for applications where the underlying sources of
variations are mainly from the component space C.

In Figure 1, if one takes an extreme view that the mapping
function is a processor or SoC, then the input space X be-
comes extremely large. In this case, considering component
variations is no longer practical. Typically, for verifying an
SoC, RTL simulation is used. Simulation cost is high due
to the large input space X which needs to be covered. In
this context, an input x becomes a functional test, e.g. a
sequence of vectors.

The work in [9] assumes that a functional test is a sequence
of 0/1 vectors of a fixed length. Then, the input space X
essentially can be viewed as an N -dimensional space com-
prising all combinations of 0/1 vectors. With such a view,
the work proposes a framework for reducing simulation time
by identifying and simulating only the potentially important
functional tests. Unsupervised learning technique, the one-
class Support Vector Machine (SVM) [10], was applied to



learn and model the unimportant input subspaces to facili-
tate the selection of the potentially important inputs. The
works in [11][12][13] extended the idea to analyze functional
tests that are assembly programs.

An example to consider variations in both the X space
and the C space is statistical delay testing, where the map-
ping function f() is a gate-level circuit with w inputs. The
2w possible input patterns constitute the X space. Then,
component variations can be based on two sources: (1) vari-
ations of the delay elements due to process variations, and
(2) variations in the delay defect sizes and locations.

Because it is not feasible to apply all 2w input patterns,
one crucial aspect of the statistical analysis is to identify
the important input patterns that excite and observe delay
defects under the statistical timing model. The early work
in [14] is an example of an approach to this delay testing
problem. However, the work relied on Monte Carlo simula-
tion of random samples from the C space and no simulation
time reduction was intended with respect to this space. Ad-
ditionally, no statistical learning was applied.

3. KERNEL-BASED LEARNING
Figure 5 illustrates a typical dataset seen by a statisti-

cal learning algorithm (For more discussion, see e.g. [1]).
When ~y is present and there is a label for every sample, it
is called supervised learning [15]. In supervised learning, if
each yi is a categorized value, it is a classification problem.
If each yi is modeled as a continuous value, it is a regression
problem. When ~y is not present and only X is present, it is
unsupervised learning [15]. When some (usually much fewer)
samples have labels and others have no label, the learning
is called semi-supervised learning [16].

Figure 5: Typical dataset for a learning algorithm

In Figure 5, each sample from X is assumed to be en-
coded with n features f1, . . . , fn. Hence, the characteristics
of each sample are described as a vector ~xi of n values. Fig-
ure 5 illustrates two fundamental challenges for applying a
statistical learning algorithm in the learning flows depicted
in Figure 3 and Figure 4:
(1) In our application, an input sample is a 2-tuple (xi, cj)
which might not be given as a vector as shown in Figure 5.
(2) More importantly, the output yi,j might not be a scalar
value, e.g., outputs can be waveforms. Note that this second
challenge is only relevant to Figure 4. Figure 3 can be seen
as an unsupervised learning flow because outputs are not
what is to be predicted. Figure 4 is a supervised learning
flow because outputs are to be predicted.

3.1 The importance of similarity measure
Many modern statistical learning algorithms follow the

paradigm of kernel-based learning [17][18]. Figure 6 illus-
trates the basic concept of kernel-based learning.

Figure 6: Kernel function vs. learning machine

In kernel-based learning, the learning machine, i.e. the
learning algorithm such as a Support Vector Machine (SVM)
algorithm [17], is not required to access the samples ~x1,. . . ,
~xm directly. Instead, all the information required for the
learning is coming from a kernel function k() as shown in
Figure 6. The kernel function measures the similarity be-
tween two samples based on some definition of similarity.

Kernel-based learning provides great flexibility to apply
learning techniques in EDA and test applications [1], espe-
cially when the samples to be analyzed are not provided in
vector formats like that shown in Figure 5. This is because
from the learning perspective the representation of a sample
is no longer important. What is important is how similar-
ity between samples should be measured. This similarity
measure, i.e. the kernel function, defines the space in which
the learning is performed. With kernel-based learning, the
challenge of having a proper input sample representation is
alleviated. However, one still has the challenge of searching
for a proper kernel function.

The kernel-based learning concept depicted in Figure 6
allows the separation of learning theories and methods from
their specific implementation for a particular application
context. To see this, consider Figure 3 and Figure 4 again.
In Figure 3, we propose to develop the theories and methods
to build a learning model Msel() to predict the importance
of an input sample s by Msel(s). In Figure 4, we propose to
develop the theories and methods to build another type of
learning model Mpre() associated with an evaluation scheme
Esel(). For a given sample s, Esel(s) indicates if s is pre-
dictable and Mpre(s) provides the predicted output.

With the concept of kernel-based learning, we see that as
long as a kernel function k() is provided to measure the sim-
ilarity between a pair of input samples s1, s2 as k(s1, s2),
a learning machine can operate on the similarity measures
to build learning models. The actual representation of the
input samples is irrelevant to the learning machine. Hence,
theories and methods for learning the modelsMsel(), Mpre(),
Esel() can be based on the assumption of having the corre-
sponding kernel functions. Then, the theories and methods
are not specific to a particular type of input samples.

When the learning flows in Figure 3 and Figure 4 are
applied to a particular simulation context, implementation
of the specific kernel functions takes place. For example,
in the context that each input x is a waveform over a time
period and each component sample c is a vector of transistor
sizes, one needs to implement a kernel function k() such that
for any pair of input samples s1 = (xi1 , cj1), s2 = (xi2 , cj2),
k(s1, s2) provides a similarity measure between them.

Without loss of generality, in the rest of discussion we
assume that 0 ≤ k() ≤ 1 where k() = 1 indicates the two
samples are identical and k() = 0 tells that the two samples
are most different. Note that one may also implement a
separate kernel function kx() applied to the x samples and
another function kc() applied to the c samples.



The implementation of kernel functions k(), kx() and kc()
is application specific. The learning theories and methods to
construct the learning flows in Figure 3 and Figure 4 are not.
This separation allows the theories and methods developed
from the proposed research to be applicable in a wide variety
of different contexts.

4. PREDICTING IMPORTANT SAMPLES
Figure 2 shows that simulation of all input samples results

in l essential output samples, Ŷ= {ŷ1, ŷ2, . . ., ŷl}. Without
loss of generality, we assume that these l output samples
are those most dissimilar to each other based on a similarity
measure ky(). In other words, one can view these l outputs
as the representative outputs of the space covered by all the
n × m outputs based on the definition of ky(). Note that
this assumption is without loss of generality because we do
not make any assumption on the kernel ky() itself. Hence,
different definitions of ky() can be used to model different
scenarios as how the essential outputs should be selected.

As a simple example, the l essential outputs can be se-
lected with an iterative greedy method. The first essential
output is selected randomly. Then, suppose the current set
of essential outputs is L̂ = {ŷ1, . . . , ŷj}. For an output y,

if ∀ŷi ∈ L̂, ky(y, ŷi) < δ, then y is included as an essential

output to the L̂ set. For example, we can set δ = 0.8 to
mean that each essential output is different from all other
essential outputs by at least 20% as measured by ky().

4.1 The essence of the learning problem
The learning flow in Figure 3 operates iteratively. In each

iteration, h input samples are selected and simulated to pro-
duce h outputs. With the assumption that essential outputs
are those most dissimilar to each other based on the simi-
larity measure ky(), it is intuitive to see that a feasible ob-
jective in each iteration is to select the h input samples that
can produce outputs that are as much dissimilar as possi-
ble. The challenge, again, is that before simulation we do
not know the outputs of those input samples to be selected
and consequently, do not know how dissimilar their outputs
would be.

For the input samples, we have another kernel function
k() that measures the similarity for a given pair of input
samples. Suppose for every pair of input samples s1, s2 and
their outputs y1, y2, we have k(s1, s2) = ky(y1, y2), i.e. in-
put similarity = output similarity. Then, observe that in
this case selecting important input samples becomes a triv-
ial problem. This is because by selecting input samples that
are most dissimilar to each other based on the kernel k(), we
guarantee that the resulting outputs would also be equally
most dissimilar to each other based on the kernel ky().

Usually, we have k(s1, s2) 6= ky(y1, y2). For example, two
very different inputs can produce two very similar outputs,
and vice versa. Then, the essence of the learning problem
in Figure 3 can be thought of as the following: Starting
from a given kernel k(), how to iteratively learn a kernel
k′() such that the similarity measures by k′() are close to
the similarity measures by ky()?

This observation inspires the idea of adaptive similarity
measure described below.

4.2 Iterative process with clustering
Figure 7 depicts an example of what might happen from

one iteration to the next in the iterative learning flow shown

in Figure 4. In this example, there are in total 14 samples.
In each iteration, 3 samples are selected.

Figure 7: Iterative search for important inputs

For iteration i = 0, no sample is applied yet. Hence, there
is no information on the Y space. Suppose that a kernel
function k() is given for measuring similarities between input
samples in the input space X •C. For iteration i = 1, three
samples are selected. Because there is no information on
the outputs in the Y space yet, in this iteration we simply
cluster input samples into three groups of similar samples.
Then, a representative sample is selected from each group.
This is to achieve the effect that the selected three input
samples are most dissimilar based on the given similarity
measure function k().

Suppose that the three selected inputs are s1, s2 and s3,
and after they are simulated, we discover that the corre-
sponding y1 and y2 are essential, e.g. they are dissimilar by
at least 80% based on the output kernel measure ky(). But
y3 is not essential because it is similar to y2 as shown in the
figure. Then, for iteration i = 2, the question is, what would
be a good strategy to take advantage of this new informa-
tion observed in the Y space to help select the additional
three input samples?

There are two pieces of information from simulating s1, s2,
and s3. First, it tells that the subspaces covered by the
two clusters containing s1 and s2 respectively are impor-
tant. Without further information, it makes sense to select
additional input samples from those subspaces. Second, it
tells that the subspace near s3 is unimportant. Hence, it
makes sense to exclude the subspace in the next selection.

Following these two ideas, in iteration i = 2, the subspace
close to s3 is blacked out. Clustering is then applied to the
rest of the samples. Three samples s4, s5, and s6 are selected.
Samples s4 and s5 are selected from the same clusters as
s1 and s2 before. Notice that s6 is at a distance from s3
and hence, it is not deemed unimportant because of s3. In
iteration i = 2, s6 by itself forms a cluster and is selected.

4.3 Adaptive similarity measure
Figure 8 illustrates how the ideas discussed above can be

accomplished without changing the clustering algorithm (for
clustering algorithms, see, e.g. [22]). Given a kernel function
k(), it implicitly defines a space where the similarity between
a pair of samples is measured. In this space, clusters are
formed. This is shown in the left plot of Figure 8. Suppose
two clusters are formed and two samples s1, s2 are selected
and simulated. Suppose the outcome is that s2 produces an
essential output while s1 does not. Hence, s2 is a known
important sample and s1 is a known unimportant sample.

The trick is that in the next iteration, a new space is
created based on s1 and s2 and the clustering algorithm is



Figure 8: Adaptive similarity measure

applied to form clusters in this new space. In the new space,
each sample s is placed at the coordinate (k(s, s1), k(s, s2))
in the 2-dimensional space defined by the two samples s1
and s2 and the given kernel function k(). Then, the sim-
ilarity between two samples si and sj in the new space is

measured by e−dist(si,sj)
2

where dist(si, sj) calculates the
distance between the two samples in the new space.

In the new space (the right plot), observe that the samples
originally close to s1 (and far from s2) are now all close to the
point (1, 0) and form a cluster. This cluster is blacked out
because s1 is an unimportant sample. The samples originally
close to s2 (and far from s1) are now close to the point
(0, 1) and form another cluster. One representative sample
is selected because s2 is an important sample. Furthermore,
the remaining two samples form a cluster of their own and
another representative sample is selected.

This simple example illustrates that without changing the
clustering algorithm, by projecting the input samples into a
new similarity measure space, the ideas discussed in Figure 7
can be realized. The adaptive similarity measure method is
summarized as the following. Without loss of generality, as-
sume that p samples s1, . . ., sp have been simulated. Sam-
ples s1, . . . , si are deemed important samples while si+1, . . .,
sp are deemed unimportant. Then, consider all input sam-
ples not yet simulated:

1. For an input sample s, for each j, i + 1 ≤ j ≤ p, if
k(s, sj) is greater than max{k(s, sq)|∀q, 1 ≤ q ≤ i},
then s is removed from consideration in the current it-
eration, i.e., s is more similar (or ”closer”) to an unim-
portant sample than to any of the important samples.

2. For all the input samples not removed, project them
into the space defined by the important samples s1, . . .,
si and the given kernel function kx() by placing each
sample s at the coordinate (k(s, s1), . . ., k(s, si)) in
the i-dimensional space. Measure similarities using the

kernel e−dist()2 discussed above. Find clusters in this
new space to select additional representative samples.

4.4 Experimental result
To assess the feasibility of the proposed adaptive similarity

measure method, we designed an experiment in the context
of Monte Carlo circuit simulation for an analog design. Fig-
ure 9 shows the circuit example, an Ultra-Wideband Phase
Lock Loop (UWB-PLL) design used to tune the frequency
of an impulse radio ultra wideband transmitter in [19]. The
UWB-PLL comprises 949 transistors. Specific design de-
tails of the PLL can be found in [19]. For our experimental
purpose, the design details are not that important.

To create a dataset as shown in Figure 2, we performed
Monte Carlo simulation of 100 component samples c1,. . . ,
c100 sampled from a process variation model for the tran-
sistors. Given a fixed frequency clock as input to the PLL,
3000 time steps were simulated for each sample. In each
simulation, the first 500 time steps were ignored. From the
remaining 2500 time steps, 50 waveforms were extracted,
each with a time period of length 50 time steps. In total,
there were 5000 waveforms collected at each net.

Then, a dataset was created for each of the four selected
pairs of input nets and output nets, whose locations are
marked in Figure 9 as (I1, O1), . . . , (I4, O4), respectively. In
each case, we applied the proposed iterative learning flow to
identify important input samples (waveforms).

Figure 10: Input/output waveform examples

For essential output waveforms, we followed the rule dis-
cussed before that they each were at least 20% dissimilar to
each other, based on a given kernel function ky(). Figure 10
shows three examples of input waveforms that produce out-
put waveforms dissimilar enough to be essential.

Apply learning Random
In Out # Iters # IS’s # EO’s # IS’s # EO’s
I1 O1 4 128 31 700 31
I2 O2 4 222 64 2200 64
I3 O3 5 270 56 750 56
I4 O4 30 1979 50 2800 50

Table 1: Experimental results

Table 1 summarizes the results. The ”# of Iters” column
shows the number of iterations performed by the iterative
learning flow. The ”# of IS’s” shows the total number of in-
put waveforms selected as potentially important input sam-
ples. The ”# of EO’s” shows the total number of essential
outputs covered by the selected input samples. For compar-
ison, we also ran a process using random selection of input
samples. Those results are shown in the last two columns.

As we can observe, random selection required selecting
many more inputs to cover the same number of essential
outputs, especially for the first three cases. This clearly
demonstrates that the iterative learning flow had a positive
effect on predicting the important input samples. With the
fourth case, learning was not as effective as the previous
three cases, because of the sequential circuit block (labeled
”Counter”) involved. This resulted in a sequential depen-
dency of an input waveform at time t on the input wave-
forms before t, which was not modeled in the learning. This
is an issue that requires further research.

4.5 Measuring similarity between two samples
In the experiments above, in each case a waveform is

represented as a time-based vector of, say 50 values. In



Figure 9: A UWB-PLL example circuit used in the experiments

other words, a waveform is represented as a vector ~a =
[a1, a2, . . . , a50] where ai is the amplitude value at time step

i. Given two waveforms ~a and ~b, one can apply popular
kernel functions described in [18] to measure their simi-
larity. For example, one can use the angle based kernel

cos(~a,~b) = (~a ·~b)/(‖ ~a ‖‖ ~b ‖), or the distance based kernel

function e−dist(~a,~b) discussed before. For example, in the ex-
periments we used the distance based kernel function as the
output kernel function ky().

Note that in the experiments, each input waveform xi is
associated with a component sample cj . Hence, an input
sample si,j should be seen as a 2-tuple (xi, cj). And, for
two samples (xi1 , cj1) and (xi2 , cj2), we need a kernel func-
tion k() to measure their similarity k((xi1 , cj1), (xi2 , cj2)).
The way we approached this problem was by defining two
separate kernels kx() and kc() and let k() = (kx() + kc())/2.

We defined kx() as the kernel function to compare two
waveforms. This is similar to ky() discussed above. We then
defined kc(c1, c2) for two component samples c1, c2 to be
based on the output samples obtained by simulating a small
number of h input waveforms based on c1 and c2. Given
c1 and c2, let their corresponding output waveforms based
on the same input waveforms x1, . . . , xh be f as y1,1, . . . , y1,h
and y2,1, . . . , y2,h, respectively. We then calculated kc(c1, c2)

= (
∑h

i=1 ky(y1,i, y2,i))/h. In other words, kc(c1, c2) is cal-
culated as the average similarity between the output wave-
forms observed based on the two component samples with
the same input waveforms. We then calculate k() as (kx()+
kc())/2.

5. PREDICTING THE OUTPUTS
Next, we will discuss the learning flow proposed in Fig-

ure 4. Realization of the learning flow demands two meth-
ods. The first method evaluates the predictability of an
input sample. The second method learns a predictor from
simulation results.

5.1 Intuition behind predictability of SVM
The predictability of modern learning algorithms such as

Support Vector Machine (SVM) [17] is explained through
the statistical learning theory framework [20]. In this sec-
tion we will first illustrate the intuition of the predictability
notion from the SVM perspective. Then, based on the intu-
ition, we will develop new concepts to capture the notion of
predictability in the context of Figure 4.

In a learning problem setting, a set of sample points (x1,
y1), . . ., (xn, yn) are given to be learned from (note: each
xi can be a vector, and each yi is a scalar value). An SVM
model is of the form [17]:

f(x) = (
∑

xi∈SV

αik(xi, x)) + b (1)

SV is a subset of the input samples. Without loss of gen-
erality, let SV = {x1, . . . , xl}. Each xi ∈ SV is called a
support vector. k() is the kernel function. Each k(xi, x)
measures the similarity between a support vector xi and the
input vector x to be predicted. The coefficient αi is the
weight associated with k(xi, x). The learning objective is
usually defined for a given prediction error function. For ex-
ample the error function calculates the sum of square errors:
Err(f) =

∑n
i=1(yi − f(xi))

2.
With a kernel k() and an error function given, learning by

an SVM algorithm means to determine the following three
things: (a) the set SV, (b) the α coefficients, and (c) the
constant b in equation (1) above. Because the non-support
vectors xl+1, . . . , xn are not used in the calculation of the
SVM model f(x), they can be seen as the samples used to
validate the model.

Conceptually, the quantity n−l
n

can be thought of as a
measure for predictability of the model f(x) [20]. This is
because a smaller l (size of the set SV ) leads to a larger
number of validation samples. In other words, if the model
can predict more validation samples (based on a given error
requirement), then the dataset is more predictable.

Therefore, we make two observations: (1) The essential
purpose of learning is to decide how many samples can be
predicted by other samples. In a sense, it can be seen as a
compression process. (2) When more samples can be pre-
dicted by other samples, the predictability for the given
dataset is higher.

5.2 SVM models with two support vectors
Suppose a SVM model comprises only two support vectors

x1, x2. The model becomes f(x) = α1k(x1, x) + α2k(x2, x)
(assuming b = 0). Assume that the kernel function k(x, z)

is a Gaussian kernel k(x, z) = e−‖x−z‖2 . Figure 11 shows
the behavior of three models for x1 = 1, x2 = 2, and x =
1.1, 1.2, . . . , 1.9.

In the first case f1(x), we have α1 = 4 and α2 = 4. The
predicted y values are shown. Observe that the predicted y
value of a xi is closer to f(x1) if xi is closer to x1. Similar



Figure 11: SVM models based on two SVs x1, x2

observation can be made to x2. In the second case f2(x), we
have α1 = 4 and α2 = 2. Notice that in this case the largest
y value no longer occurs at x = 1.5. This is due to the two
non-equal weights α1, α2.

Observe that by changing α1, α2, the model is capable
to capture a variety of convex functions. In the third case
f3(x), we take f2(x) and normalize it with the similarity
sum k(x1, x) + k(x2, x). This results in a linear function.
Hence, if we desire to model a linear behavior between two
samples, we can use the normalization method. Figure 11
illustrates that a simple two-SV learning model can imple-
ment a variety of interpolation functions between two sam-
ples x1, x2. We will use this observation to develop a notion
of predictability in the context of Figure 4.

5.3 Constructing local predictors
Given a circuit, we partition the circuit into individual

circuit elements (CEs). For example, partitioning can be
based on design blocks or subjected to user choice. Parti-
tioning allows the learning flow to be applied on individual
CEs rather than on the entire circuit.

For learning a predictor for a CE, suppose a set of sam-
ples (s1, y1), . . . , (sn, yn) has been simulated and is available
for the learning. For example, these samples are simulated
inputs and outputs obtained during the circuit simulation
from the previous iterations, in the iterative learning pro-
cess of Figure 4.

With a set of the simulated samples, we can try to learn
a single model f(s) → y for all samples, but this could be
difficult if f(s) is restricted to a two-sample model as shown
in Figure 11. Hence, instead of learning a single model, we
can try to learn a set of local predictors, each based on two
input samples.

To construct a local predictor, we will first select two input
samples sa, sb. Assume using the kernel k() = kx() + kc()
as discussed in Section 4.5 before. We first define a (po-
tentially) predictable region as: ∀s : k(s, sa) ≤ k(sa, sb) ∧
k(s, sb) ≤ k(sa, sb). Figure 12 illustrates how this region
looks like in a 2-dimensional plane - it is simply the inter-
section of two circles (for k() that is distance-based).

The next step is to extract a local dataset for the learn-
ing. Figure 13 illustrates the local dataset consisting of all
the input samples s1, . . . , si that fall inside the predictable
region.

Then, the learning is to construct a two-sample model
based on sa and sb to predict the outputs of s1, . . . , si within
a given accuracy, e.g. by finding the two α’s coefficient val-
ues in the model. If this can be done, then a local predictor
is found. In actual application, a new input sample s is first
checked to see if it is inside a predictable region. If it is
inside the region of a local predictor, then the output of s

Figure 12: A predictable region

Figure 13: Local dataset to verify a pred. region

is predicted by the local predictor. For a given CE, one can
build many local predictors based on many input pairs.

In the proposed approach to apply the learning flow in
Figure 4, predictability of an input sample is decided at two
levels: (1) The first level is based on information and com-
plexity measures. At this level a circuit element is decided
if it is suitable to apply learning. If it is not, then no sim-
ulation cost saving is attempted on the circuit element. (2)
The second level is based on the predictable region defined
by two input samples associated with a local predictor. This
region defines when the local predictor can be applied.

5.4 Experimental Result
The experiments were based on the setup discussed in

Section 4.4. For the UWB-PLL, 16 circuit elements (CEs)
were selected, each with one input and one output. The sizes
of the CEs were from 10 to 20 transistors. As discussed in
Section 4.4, 5000 waveforms were collected at each input
point with corresponding 5000 waveforms collected at the
output point. Hence, for each CE we had 5000 samples.

We took the first 1000 sample points as the training dataset
and used the remaining 4000 sample points as the validation
dataset. With a training dataset, we selected up to 6K pairs
of input samples. For each pair we tried to learn a local
predictor. If this succeeded, we counted it as a success.
The success rates are reported in the row ”Success %.” For
each CE, the collection of the local predictors were applied
to the 4000 samples in the validation dataset to check how
many of their outputs were predictable by at least one of
the predictors. The percentages of the predictable outputs
are reported in the row ”Predictable %.”’

Results are shown in Table 2. The CEs are divided into
two groups. The first group comprises CEs of various types.
The second group comprises CEs of divider type. In the
first group, CEs 6, 7 and 8 are less predictable, reflected
in their low success % and low predictable %. Note that
a low success % does not imply a low predictable % and
vice versa. In the second group, the predictable % numbers
are generally high. This shows that divider type of CEs are
quite predictable. Note that in the table, the predictable
% number could be thought of as a potential saving of the



Group (1) Group (2)
CE index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Success % 54.7 11.7 12.2 55.1 25.8 8.51 9.49 10.9 27.3 32.1 39.5 28.5 24.6 39.1 19.3 17.6
Predictable % 96.3 77.2 75.7 74.2 62.3 26.7 33.5 43.3 95.5 94.5 94.3 93.6 91.9 90 79.4 82.2

Table 2: Summary of results for 16 circuit elements from UWB-PLL

simulation cost on the particular CE. This is because those
outputs are predicted rather than simulated.

6. CONCLUSION
In this work, we present two learning flows to be applied

in the context of simulation-based analysis. Both learning
flows are designed to improve the efficiency of simulation
analysis. In the first flow, the importance of input samples
is predicted, and efficiency is improved by discarding unim-
portant input samples in the analysis. In the second flow,
the outputs of selected inputs are predicted and simulation
cost is saved by not simulating the selected inputs. We ex-
plain the machine learning concepts and methods needed
to implement the two flows and present experimental re-
sults to demonstrate their feasibility. The proposed learning
flows are generic and can be applied in different application
contexts. Changing from one context to another requires
implementation of specific kernel functions suitable for the
respective application. The applicability of the proposed
learning flows is not yet fully explored and is subjected to
future research.
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