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Abstract—Univariate outlier analysis has become a popular
approach for improving quality. When a customer return occurs,
multivariate outlier analysis extends the univariate analysis
to develop a test model for preventing similar returns from
happening. In this context, this work investigates the following
question: How simple multivariate outlier modeling can be? The
interest for answering this question are twofold: (1) to facilitate
implementation of a test model in test application and (2) to
ensure robustness of the methodology. In this work, we explain
that based on a Gaussian assumption, a simpler covariance-based
outlier analysis approach can be sufficient over a more complex
density-based approach such as one-class SVM. We show that
correlation among tests can be a good metric to rank potential
outlier models. Based on these observations a simple outlier
analysis methodology is developed and applied to effectively
analyze customer returns from two automotive product lines.

1. INTRODUCTION

Customer returns are parts that pass all tests but fail at
customer site. In automotive market, the business target is
to achieve zero return. When rare returns occur they are
analyzed thoroughly. The outcome of the analysis usually leads
to modification or addition of screens to ensure no similar
occurrence in the future.

Customer returns are mostly due to latent defects. This is
especially true for automotive products where a very compre-
hensive test flow is applied to ensure zero test escape.

In the automotive market, Part Average Testing (PAT) [2]
is a common approach to screen abnormal parts based on
parametric tests. There can be two types of PAT, static and
dynamic, where both look to screen univariate outliers.

Suppose a part passes all the univariate outlier tests and fails
at customer site. A natural extension to the outlier analysis is to
look for multivariate outlier models [4]. A multivariate outlier
model is constructed in a test space defined by multiple tests
collectively. Search for a multivariate outlier model require
searching for the appropriate test space. One can call this a
test space search problem.

While prior works had proposed the idea of using multi-
variate outlier screening [4][11], there are several fundamental
questions unanswered. First, finding an outlier model by itself
does not justify the application of the model. This is because
with enough tests that can be chosen to define a multivariate
space, many good parts can also become ”outliers.”

Second, for a given customer return, there can be more than
one multivariate outlier models to choose from. This leads to
another fundamental question: how many multivariate outlier
models are there for a given return?

Third, even though one can build a outlier model in simula-
tion, it does not mean the model can be applied in production.
For example, an SVM outlier model [9] is represented by a
collection of samples. Such a model may be too complex to
implement on a tester or online. Hence, a simpler model is
always preferred.

To address these fundamental questions, in this work we
first show that for many tests, the Gaussian assumption can be
quite reasonable to characterize their distributions. Then, based
on the assumption this work investigates the next question:
What is the coverage space difference between a collection
of univariate models and the multivariate model based on the
same subset of tests?

We observe that this coverage space difference is larger for
highly correlated tests than that for uncorrelated tests. This
observation leads to a way to prioritize the outlier test spaces
where test correlations are used to determine their ordering
to be examined. This prioritization gives a simple strategy to
tackle the test space search problem and when applied to an
automotive product line, uncovers multivariate models that can
be effectively applied.

The rest of the paper is organized as follows. Section
2 explains that being an outlier does not imply being ab-
normal. Section 3 shows that given a return, there can be
many multivariate models to consider. This motivates the
development of a strategy to prioritize the outlier test spaces.
Section 4 shows that for the given test data under study,
most tests result in a distribution that is Gaussian. Based
on the Gaussian assumption, we then explain why a simple
covariance-based outlier model building technique can be used
to replace a complex density-based technique like one-class
SVM. Section 5 discusses the difference between applying a
collection of univariate outlier models (e.g. SPAT and DPAT)
and a multivariate model using the same subset of tests.
Based on the observation in Section 5, section 6 suggests a
simple strategy to prioritize the outlier search process based
on dimensionality and test correlations, and demonstrate its
effectiveness on cutomer returns from two automotive product
lines. Section 7 concludes with final remarks.

2. BEING OUTLIER 6= BEING ABNORMAL

Outlier analysis is a form of unsupervised learning. Outlier
is a relative measure. Hence, to identify an outlier, one first
has to define a population set used to define the boundary of
inliers. We can call this set the base set.

In this work, we consider wafer sort tests. Given a test
distribution formed by the measured values from a base set



of dies, deciding an outlier boundary can be subjective. The
base set can be all dies from a wafer, multiple wafers or a
lot. And typically one looks to screen out ”gross” outliers
whose measured values are far from the distribution. This is
illustrated in Figure 1-(a). However, deciding how far is far
enough can be subjective. This decision is also impacted by
the concern of yield loss. Therefore, typically one would not
set the boundary close to the distribution.

Assuming that ”gross” outliers had been screened out, when
a customer return presents, one would look for screening
the return as a ”marginal” outlier. However, as the outlier
boundary moves closer to the distribution, many good dies
may become outliers as well.

Fig. 1. Many good dies can be ”outliers”

Figure 1-(b) plots an outlying property based on more than
1K good dies. The test data is collected for an airbag sensor
part with 950+ parametric tests. The x-axis shows the number
of tests a die in outlying on, where being an outlier is defined
as being among the top five most outlying dies. As the plot
shows, only less than 60 dies are not classified as an outlier
(outlying in no test) based on the particular outlier definition.
The rest are outlying in one or more tests, with more than 150
dies outlying in ≥ 16 tests.

Fig. 2. Stat. simulation of outlying properties

Plot in Figure 1-(b) can be explained with a simple statistical
simulation. Assume that there are M tests and 1K dies. Further
assume that the measured values of each test follow the same
Gaussian distribution. Assume the measured values of each die
is randomly drawn from the Gaussian distribution. Figure 2-
(a) plots the percentage of dies found to be an outlier based on
at least one test. Here again, an outlier is defined to be among
the top five most outlying dies in a particular test distribution.

Observe in Figure 2-(a) that, as the number of tests M grows
to 1000, almost all dies are outliers. Figure 2-(a) shows that
with enough tests, any die can be marginally outlying in at

least one test. This simple statistical simulation confirms what
we observe from the test data in Figure 1-(b).

Suppose one finds a test such that a customer return resides
as one of the top five most outlying dies, Figure 1-(b)
essentially demonstrates that finding such an outlying property
is insufficient to justify its application. Further evidence is
required to justify the model. One way can be to find additional
returns that are also classified by the model as outliers. In
other words, a model can be further justified if it is shared by
multiple returns.

Figure 2-(b) follows the same simulation and considers all
combinations of 2-die pairs. The plot shows the percentage
of pairs that both dies are outliers in at least one same test.
Observe that for 1000 tests, the percentage drops significantly.
Therefore, when a model is shared by two returns, one has
much higher confidence to apply the model than the case
where the model is based on only one return. Furthermore,
it is intuitive to see that this confidence grows rapidly as the
model is shared by more returns.

3. THE # OF MODELS FOR A RETURN

Searching for models shared by multiple returns can begin
by considering all outlier models for a return. This raises
the question: How many outlier models for a return if one
considers both univariate and multivariate models?

Note that a multivariate model can be based on i tests for
any i less than or equal to the total number of tests. Hence,
given n total tests there are 2n − n − 1 test spaces that can
be used to define a multivariate outlier model. Here each test
space is formed by a combination of tests.

Suppose the model building algorithm is fixed. For example
we use one-class SVM [1] as suggested in [10]. Also suppose
the base set for the outlier analysis is fixed. For example, the
base set consists of all dies on the same wafer, multiple wafers
or from the same lot. Further, the definition of an outlier is
fixed as being among the top five outlying dies. With these
aspects fixed, each test space corresponds to one outlier model.
Then, Table I shows the number of possible outlier models for
a given return.

In Table I, the base set consists of around 1300 dies. The
”# of tests” shows the size of the test space, i.e. using one,
two or three tests. Again, there are more than 950 tests. For
example, in total there are more than 142M 3-test test spaces
to consider ( 950×949×948

1×2×3 ), where in 795K test spaces 1-class
SVM builds a model to classify the return as one of the top
5 outlying dies among the 1300 dies.

TABLE I
THE # OF MODELS CLASSIFYING A GIVEN RETURN AS ONE OF THE TOP 5

OUTLIERS (USING 1-CLASS SVM)

# of tests # of models Runtime
1 11 0.25s
2 3027 59.27s
3 795128 19195.40s



4. IF TEST DISTRIBUTION IS GAUSSIAN

From the appearance, the results in Table I may motivate
one to develop a search heuristic to overcome the seemingly
exponential search space. For example, the heuristic can
proceed by following the size of the test space, i.e. the number
of tests. The heuristic explores the test spaces with i tests
before exploring the spaces with i+ 1 tests. However, such a
search heuristic may run out of time before determining if it
can or cannot find a shared model.

Being able to answer ”no model exists” is essential for an
approach to be considered robust. The robustness requirement
is crucial for its practical use. Otherwise, it would be difficult
to know when to stop and when to resort to other means (such
as failure analysis (FA)) to tackle a customer return.

4.1. Why One-Class SVM

One can overcome the challenge presented in Table I by
arguing that there is no need to go beyond certain dimen-
sionality. For example, one can show that if there is no
shared model found in two-dimensional spaces, the chance of
finding one in three- or higher-dimensional spaces is minimal.
However, outlier modeling depends on the outlier model
building algorithm. Then, one faces the question of choosing
an algorithm to demonstrate the property and additionally, if
using one algorithm is enough. In general, without making
any assumption on the underlying distribution of the data, it
is difficult to establish this property.

One-class SVM is an outlier analysis approach based on
density estimation [1]. The approach makes no assumption of
the underlying distribution of the data. This is in contrast to a
more traditional covariance-based method where one assumes
that the underlying distribution is Gaussian. In a covariance-
based method, the covariance of the distribution is estimated
[8]. Then, one can use Mahalanobis Distance to define an
outlier boundary [3].

Mahalanobis distance is an adjusted euclidean distance from
the mean of a distribution, where the distance is adjusted based
on the covariance. It is defined as:

Md(x) =
√

(x− µ)T Σ−1(x− µ)

where Σ−1 is the inverse of the covariance matrix and µ is
the mean vector. In application, the mean and covariance are
estimated from the data.

Assuming the data is multivariate normally distributed with
d dimensions, then the Mahalanobis distance of the samples
follows a Chi-Squared distribution with d degrees of freedom,
denoted as X 2

d . Let Fd(x) denote its CDF. An outlier model
can be built by comparing the Mahalanobis distance to F−1

d (q)
where q is a given quantile. For example, if one desires to
screen outliers at 3σ bound for a univariate Gaussian distri-
bution, the quantile is 0.9973. The equivalence Mahalanobis
distance in the d-dimensional space is F−1

d (0.9973). For
example in the two-dimensional space F−1

2 (0.9973) = 11.83
Hence conceptually, using Mahalanobis distance to define

an outlier boundary with a multivariate Gaussian distribution

is similar to using the standard deviation to define a boundary
with a univariate Gaussian distribution. In the univariate case,
it is intuitive to use, for example a kσ to define the bound-
ary. In the multivariate case, we would apply the equivalent
Mahalanobis distance.

Correlation = 0.8 Correlation = 0.0 

Fig. 3. Illustration of Mahalanobis Distance

Figure 3 illustrates the boundary of a Mahalanobis distance
with data sampled from two-dimensional Gaussian distri-
butions. Both distributions are based on univariate Normal
distribution N (0, 1). On the left, the two random variables
are 0.8 correlated. On the right the correlation is 0. When
the two random variables are correlated, observe that each
Mahalanobis distance defines an oval, following the direction
where the data has the most variance. In the case of correlation
zero, the shape becomes a circle.

Now consider why one-class SVM may be preferred over
the simpler covariance-based outlier analysis. Figure 4 illus-
trates their fundamental difference.

Fig. 4. 1-class SVM vs. Covariance-based model

The left of Figure 4 shows an SVM model. The right
shows a covariance-based model. The underlying distribution
is clearly not a single Gaussian distribution. In the SVM
case, two boundaries are drawn, each is specific to a cluster
of samples. The covariance-based model can only have one
oval boundary. Hence, both clusters are included in the same
oval. Consequently, points between the two clusters are not
recognized as outliers by the covariance-based model.

Figure 4 shows that if two returns occur in between the two
clusters, one-class SVM would find the shared model while
the covariance-based method would miss it. This illustrates
why one-class SVM is preferred and suggested in [10] - it is
more powerful because it does not make any assumption about
the underlying distribution of the data.

On the contrary, Figure 5 shows the SVM model and
covariance-based model on a data distribution that is Gaussian.
In this case, observe that the two models become very similar.
This motivates the next question: Can one assume Gaussian
distribution when analyzing test data?



Fig. 5. Results with Gaussian-distribution data

4.2. Property of test data distribution

Fig. 6. Test data distribution example

Figure 6-(a) plots the test data distribution based on a
particular test and all passing dies from a wafer. The data
is from the same airbag sensor product line mentioned before.
Observe that the distribution is not Gaussian.

Figure 6-(b), on the other hand, plots the same test data by
coloring the data points with test site. There are four sites in
the wafer sort test. Figure 6-(b) illustrates that the multimodal
distribution observed in Figure 6-(a) is actually an artifact
of tester site-to-site variation, i.e. the wafer distribution in
Figure 6-(a) is a mixture of four site distributions.

What if one aligns the means of the four site distributions?
Figure 7-(a) shows the result. The distribution looks Gaussian.
In fact, a statistical test confirms that the distribution indeed
can be assumed Gaussian with high confidence. Figure 7-(b)
shows another result from another test. The distribution is also
confirmed to be Gaussian by the statistical test.

Fig. 7. Distributions after removing site variation

There are many ways to test if a given set of data points
follows a certain distribution. For example, Q-Q plot [12] is
one of the popular methods. Given a CDF F , the quantile
for a value q is F−1(q). In a Q-Q plot, the quantiles from
the assumed distribution (i.e. Gaussian) are plotted against
the quantiles calculated based on the data for a range of
q values. In the ideal case they match in every pair. One
can calculate the correlation between these two sequences of
quantiles to measure how well they match. For example, in

the test performed for Figure 6, the Gaussian assumption is
confirmed with such a correlation > 0.96.

We applied the statistical test to wafer test data from each
individual test after removing the site-to-site variation. Among
all tests, 93% of them are confirmed to follow a Gaussian
distribution. 1.3% of them follow an exponential distribution.
Others fail both types of statistical tests. The results are
checked across multiple wafers from different lots.

4.3. Covariance-based modeling

If majority of the tests result in measured values that
follow a Gaussian distribution, then according to Figure 5,
the benefit of applying the more complex one-class SVM
algorithm over the covariance-based method diminishes. This
is further illustrated in Figure 8.

Covariance Model 

One-Class SVM Model 

One-Class SVM Model 

Fig. 8. Covariance modeling is enough

Figure 8 is based on the same set of dies used to plot
Figure 6 by adding a second test to make it a two-dimensional
plot. The left plot shows the original distribution in the two-
dimensional test space with site-to-site variation. The right
plot shows the distribution by aligning the means of the four
clusters. In the right plot, observe that the the difference
between the two models is very small.

Because the difference is rather small and because we look
for models shared by at least two returns, there is no clear
benefit of one method over the other. If one selects to use one
method only, the chance of missing a shared model by using
another method is minimal. Hence, under these assumptions
the covariance-based method would be preferred because it is
simpler and hence, easier to examine its properties.

We choose to use the covariance-based method also because
our original goal is to find a way to prune the search space
presented in Table I. The simplicity of a covariance-based
model allows one to examine the space coverage difference
more easily. By space coverage difference, we mean the region
in a test space that is defined as outlier region by one model
but as inlier region by another model.

5. WHY MULTIVARIATE OUTLIERS

What is the added value provided by multivariate outlier
analysis? To see this, we analyze the space coverage difference
between a multivariate model and a collection of univariate
models based on the same subset of tests.

Figure 9 illustrates the space coverage difference in a
two-dimensional test space. The x-axis and y-axis show the



Fig. 9. Space coverage difference between a 2-dimensional covariance-based
model and two univariate models using the same tests

measured values from two tests. This is an artificial example
for illustration purpose.

In this artificial example, measured values from each test
follows the same Gaussian distribution N (0, 1). Hence, when
combining the data from the two tests, the result is a multi-
variate Gaussian distribution. Measured values from the two
tests are assumed to be 0.8 correlated.

For each test, the test limits to define a univariate outlier
is set at ±3σ. The two univariate outlier models prescribes a
”3σ bounding box” where dies outside the box are outliers.

The covariance-based analysis using the equivalent 3σ Ma-
halanobis distance gives a model of an oval shape as discussed
before. Hence, the space coverage difference between the
covariance-based model and the two univariate model is the
shaded areas between the bounding box and the oval.

Dies inside the shaded areas are classified by the covariance-
based model as outliers, but these dies would have been missed
by the univariate outlier analysis. Hence, the space coverage
difference is the test space where the covariance-based model
provides unique coverage.

Fig. 10. Test correlation = 0

5.1. Correlation and test space coverage

Figure 10 re-plots Figure 9 by changing the assumption that
two tests are 0.8 correlated to no correlation. Observe that the
space coverage difference shrinks, i.e. the unique coverage by
a covariance-based multivariate model shrinks.

Figure 11 illustrates the relationship between the correlation
of the two tests and the unique coverage provided by the
covariance-based multivariate model. On the left, the boundary
of each covariance-based model is plot against the correspond-
ing correlation. The correlation numbers are shown as 0 to 100
(%) and colored differently. On the right, the x-axis shows the
correlation and y-axis shows the unique coverage measured
as a percentage of area of the 3σ bounding box. We see that

Fig. 11. Correlation vs. test space coverage

as the correlation approaches 1, the unique coverage reaches
above 90% of the bounding box.

Figure 11 suggests that given all the covariance-based
models of the same dimensionality, one would prefer the
models with tests that have a higher correlation than the model
with tests that have a lower correlation. However, it also shows
that even with tests of no correlation, there is still missing
coverage space by the bounding box, which can be uniquely
covered by the covariance model.

6. PRIORITZING THE SEARCH

Given n tests, there can be 2n−n− 1 multivariate models.
Let Si be the collection of all multivariate models of the same
dimensionality i, for i = 2, . . . , n. Suppose one applies all
model in S2. What is the coverage space missed by S2 and
covered by S3 ∪ · · · ∪ Sn−1?

TABLE II
COVERAGE MISS (MEASURED AS %) AFTER APPLYING ALL MODELS UP TO

DIMENSIONALITY i

dimensionality 2 3 4 5 6
corr=0.9 0.04 0.03 0.00 0.00 0.00
corr=0.0 5.55 0.46 0.01 0.01 0.01

Extending Figures 9 and 10, Table II illustrates this coverage
miss for n = 7. For example, with dimensionality 3, we
assume that all models in S2 ∪ S3 are applied. Then, we
estimate the unique coverage contribution from S4 ∪ · · · ∪S6.

The missing coverage space is estimated through Monte
Carlo simulation where 1M sample points are randomly drawn
inside the 3σ bounding box. Then, if the point falls outside
a covariance model, it is covered. Otherwise, it is missed.
Each model follows the equivalent Mahalanobis distance of
3σ bound in the univariate case. Each test again is assumed
to follow the Gaussian distribution N (0, 1). Two cases are
considered: correlation=0.9 and 0.0.

The base of the % number is the total sample points that
can be captured by all models, i.e. S2 ∪ · · · ∪ S6. As Table II
shows, after we apply all models in S2, there is little missing
coverage space. Table II suggests that after S2 one may ignore
models in higher dimensionality.

6.1. Experimental result

The analysis above can be summarized into three points:
(1) If one has to choose between two models of the same
dimensionality, the model using tests of higher correlation
should be prefered. (2) If one has to choose between two
models of different dimenionalities, the model with lower
dimensionality should be preferred. (3) After one considers



all models up to i dimensionality for i ≥ 2, the unique
contribution from rest of the models in higher dimensionality
is diminishing rapidly as i increases.

Following these three points, in practice we implement a
simple search strategy by exhaustively considering all models
of two tests. Then, among those models we rank them based on
test correlation. We applied this strategy to the airbag sensor
product line. Below shows result on 9 customer returns each
on a different wafer.

TABLE III
# OF OUTLIER MODELS IN 1- AND 2-DIMENSIONAL TEST SPACE

Return 1 2 3 4 5 6 7 8 9
dim= 1 11 6 19 23 7 12 41 22 9
dim= 2 2988 1639 8622 11892 1618 3222 18349 8253 2110

Table III shows the number of covariance-based models
that classify each return as an outlier. A similar result for
return 1 was shown before in Table I. Notice there is small
difference between SVM and covariance-based models in the
2-dimensional case. Again, an outlier is among the top five
most outlying dies.

In the univariate case, return 5 and return 7 have shared
models. However, there is no shared model between other
pairs. Therefore, we follow the search strategy to look for
shared models in the two-dimensional test spaces.

Fig. 12. Two returns projected as Mahalanobis distance based outliers

Figure 12 shows the test space that projects the two returns
as outliers classified by the covariance-based models. Notice
that the two tests are highly correlated. Note that there can be
other shared models. This is the test space where the two tests
have the highest correlation.

Fig. 13. Test space shared by 7 returns

The same test space is actually shared by 7 returns. Fig-
ure 13 shows the overlap of the test data from the 7 wafers
and 7 returns on the same test space, i.e. taking plots such
as Figure 12 and overlap them. Note that the covariance-
based model is applied to the 7 wafer individually. Hence,
individually each return is more outlying as shown in Figure 12
than that shown in Figure 13. On each wafer, the return is
classified as one of the top five outliers.

To further demonstrate the validity of the strategy, customer
returns from a 2nd product line was analyzed. The 2nd line

Fig. 14. Test spaces project multiple returns as outliers - 2nd product line

is an automotive SoC product with 1K+ parametric tests.
Figure 14 shows two test spaces each found to be shared by
multiple returns.

7. FINAL REMARKS

The use of Mahalanobis distance for screening outliers in
test is not new. The authors in [5][6] had proposed using
Mahalanobis distance in correlated test space to screen outliers
for analog parts. Using test correlation as an indicator to look
for multivariate outliers is also not new. The author [7] was
among the first to suggest that, and proposed using Principal
Component Analysis (PCA) to expose multivariate outliers for
screening burn-in fails.

This work solves a different problem. This work shows that
finding an outlier model for a known fail is relatively easy. The
next challenge is to find a model shared by multiple fails. By
assuming that most of the tests follow a Gaussian distribution
after removing site-to-site variations, this work shows that
exhaustively considering simple covariance based models in
two-dimensional test spaces is a sufficient strategy. Hence, the
contribution of the work is not in providing a new approach.
Rather it explains when and why a simple approach such as
covariance based modeling is enough.
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