
Novel Test Detection to Improve Simulation
Efficiency – A Commercial Experiment

Wen Chen, Nik Sumikawa, Li-C. Wang
University of California, Santa Barbara

Jayanta Bhadra, Xiushan Feng, Magdy S. Abadir
Freescale Semiconductor Inc.

Abstract—Novel test detection is an approach to improve
simulation efficiency by selecting novel tests before their ap-
plication [1]. Techniques have been proposed to apply the
approach in the context of processor verification [2]. This work
reports our experience in applying the approach to verifying a
commercial processor. Our objectives are threefold: to implement
the approach in a practical setting, to assess its effectiveness
and to understand its challenges in practical application. The
experiments are conducted based on a simulation environment
for verifying a commercial dual-thread low-power processor core.
By focusing on the complex fixed-point unit, the results show up
to 96% saving in simulation time. The main limitation of the
implementation is discussed based on the load-store unit with
initial promising results to show how to overcome the limitation.

I. INTRODUCTION

In the industry, full-chip functional verification remains
largely relying on extensive simulation. In simulation-based
verification, a state-of-the-art flow typically includes test gen-
eration, checking and coverage collection. The coverage met-
rics are defined to measure the completeness of the verification
and direct simulation towards uncovered areas of the design
[3]. A satisfactory coverage on a collection of metrics is
required for tape-out. Various coverage metrics such as toggle
coverage and functional coverage are supported in commercial
simulation flows.

In a practical simulation-based verification environment, one
of the most challenging tasks is to produce the tests that lead
to the desired coverage level. One common practice is to
manually produce direct tests targeting on specific coverage
items. For processor verification, another common approach
is constrained random test program generation in which users
provide constraints and biases in the form of test templates and
directives to the test generator [4]. The input to the test gener-
ator specifies the sampling scheme for various dimensions in
the test space such as address selection, register dependencies,
arithmetic data selection, etc.

This work is supported by Semiconductor Research Corporation, project
2012-TJ-2268.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
2012, November 5-8, 2012, San Jose, California, USA

Copyright 2012 ACM 978-1-4503-1573-9/12/11... $15.00

Coverage-directed test generation (CDTG) is an emerging
approach to overcome the test generation problem. CDTG
techniques dynamically analyze coverage results and auto-
matically adapt the test generation process to improve the
coverage. Recent works proposed various techniques to learn
from the simulation results and improve the test generation.
These techniques employ a variety of learning techniques
such as Bayesian Networks [5], Markov Models [6], Genetic
Algorithms [7] and Inductive Logic Programming [8]. In [9]
the authors propose an automatic target constraint generation
technique to alleviate the burden of constraint generation.
In [10] the authors proposed to learn test knowledge from
micro-architectural behavior and embed the knowledge into
test generator to produce more effective tests. In a latest
work [11], the authors proposed a novel methodology to
generate input stimulus and attain coverage closure for design
verification based on GoldMine [12], a recently developed
automatic assertion generation engine using data mining and
formal verification techniques.

Fig. 1. Illustration of novel test detection

Novel test detection tries to tackle a problem much more
restricted than CDTG. Figure 1 illustrates the approach. In a
novel test detection framework, the assumption is that there is
a constrained random test generator that can instantiate the test
template to generate a large number of functional tests. The
idea is to learn a novel test detection model based on the results
from tests that have already been applied. This model is used
to select novel tests from the large pool of tests before their
application. Hence, only the selected novel tests are applied,
which reduces the simulation cost.

The authors in [1], [13] proposed a novel test detection
framework where Support Vector Machine (SVM) one-class
algorithm [14] is used to build models. The framework is
limited to analyzing fixed-cycle functional tests. The authors
in [2] extended the application to build novel test detection
models where tests are assembly programs and the context
is for processor verification. The experiments were conducted
based on a rather simple Plasma/MIPS processor design.

101

The objective of this work is not to suggest that novel test
detection is better than any of the existing approaches or to
compare them. In fact, novel test detection can be viewed
as complementary to constrained random test generation and
to CDTG. Our objective instead is to assess the applicability
and effectiveness of novel test detection in a practical setting.
We began by implementing the approach proposed in [2] in a
company’s in-house simulation environment for a dual-thread
low-power processor. The targeted production date is in mid
2012 and the experiments were conducted in parallel to the
ongoing verification efforts.

In this work, we explain the main findings based on the
commercial experiment. These findings are organized into the
remaining flow of the paper as follows:
• Section II presents simulation results to illustrate the

existence of novel tests in the particular simulation-based
processor verification environment.

• Section III reviews the approach proposed in [2], in
particular the graph-based kernel method used to measure
similarity on a pair of assembly programs. Applying the
approach to the complex fixed-point unit demonstrates up
to 80% potential saving in simulation time.

• Section IV discusses the major challenge of applying the
graph-based kernel approach in practice. To implement
the graph-based kernel demands a user to manually
implement a cost table defining the similarity between
every pair of instructions in consideration. To overcome
this challenge, an alternative approach based on esti-
mating coverage of an assembly program is proposed.
This alternative approach implements a flow that requires
minimal user involvement. The implementation is also
easier. We demonstrate that this alternative approach can
be as effective as the graph-based kernel approach and
delivers up to 96% potential saving in simulation time.

• Section V presents how a novel test can be analyzed
to extract rules to manually modify the test template.
We present the benefit of this modification by showing
coverage improvement on one experiment.

• Section VI discusses the main limitation of the alternative
approach and proposes an extension to overcome the
limitation. The effectiveness of this extension is shown
based on an experiment on a module in the load-store
unit with a potential 96% saving in simulation time.
Section VII concludes the paper.

II. THE EXPERIMENTAL FRAMEWORK AND NOVEL TESTS

In this work, the experiments were conducted based on a
dual-thread low-power 64-bit Power Architecture-based pro-
cessor core. It is targeted to be manufactured in mid 2012
in a 28 nm technology. The processor core supports dual-
thread capability that enables each core to act as two virtual
cores. Each thread has dedicated Fetch, Decode, Issue, and
Completion resources. Each thread also has a dedicated Branch
Unit, Load Store Unit, and Simple Fixed Point units. The
Complex Fixed Point unit as well as the Floating Point Unit
and the vector engine are shared between threads. The core

is designed with a memory subsystem supporting up to an
eight-core implementation in a multiprocessing system.

The in-house simulation-based verification environment
conforms to a state-of-the-art coverage-driven flow. An in-
house test generator is used to generate constrained random
test programs based on user-supplied test templates. During
the test generation, architectural simulation is also performed
and the simulation results are embedded in test programs.
During the RTL simulation, the RTL simulation results are
compared with the architectural simulation results for checking
correctness. The coverage information is recorded and reported
using a commercial coverage analysis tool. The verification
coverage space is divided into subspaces. A subspace can
be a part of the design, e.g., a particular unit or a specific
mechanism such as memory collision, etc. In our experiments,
we focused on the toggle coverage of the Complex Fixed Point
unit (CFX) and the Load Store Unit (LSU). Test templates
targeting on these units are provided by the verification team
and are used in constrained random test generation.

A. Existence of novel tests in practice

Figure 2 shows three plots for three simulation runs, two on
CFX and one on LSU. The x-axis shows the number of tests
simulated, incremented by 30 at a time. The y-axis shows
the normalized coverage based on the maximum coverage
achieved for the respective unit in all experiments.

For the CFX, the first run consists of 2000 test programs
each with 50 instructions and an initial machine state. The
test programs are instantiated from a template based on 33
instructions targeting on the unit. The second run is similar,
consisting of 10K test programs each also with 50 instructions
and an initial state. For the LSU, the run consists of 3000 test
programs each with 10 instructions and an initial state. The
template is based on 6 instructions targeting on the unit.

In all three plots, we observe jumps in the coverage curves.
These jumps are due to special tests that provide relatively
significant coverage at the given simulation point. These
special tests are the novel tests that we are looking for. If they
can be identified before simulation, they can be applied earlier
in the simulation run. As a result, the respective coverage can
be achieved much faster.

Take the first plot as an example. We see that the jump
occurs after simulating 1900 tests. We also see that the
coverage curve is flat from 1300 to 1900. Suppose an engineer
uses the template to instantiate 1600 tests and observes the
flat curve. It is likely that the engineer would decide it is not
effective to continue. Then, the coverage jump would have
been missed. If we have the ability to predict novel tests before
simulation, we can generate a much larger number of tests to
begin with and consequently reduce the chance of missing a
test capable of producing a significant coverage increase.

The three plots in Figure 2 shows the existence of novel
tests in practical simulation-based verification scenarios. This
gives a clear motivation to apply novel test detection to identify
those tests before simulation.

102

Fig. 2. Three simulation runs to illustrate the existence of novel tests

III. THE GRAPH-BASED KERNEL APPROACH

A. Kernel based learning with SVM one-class

Support Vector Machine (SVM) one-class algorithm, such
as the ν-SVM algorithm [14] is an unsupervised learning
method that builds a model to identify outliers in a given
set of samples. The parameter ν is a user-supplied input that
represents an upper bound on the number of outliers and lower
bound on the number of support vectors. In application with
n samples, we typically set ν to be 1

n meaning that we want
to build a model to incorporate at least n − 1 samples, i.e.
with at most one outlier.

In applying ν-SVM in novel test selection, the samples are
tests that have been simulated up to the point of simulation.
Suppose they are t1, ..., tm. A SVM model when applying to
an un-simulated test T takes the following form:

M(T) =

m∑
i=1

αiK(T, ti)− ρ

Conceptually, one can consider each αi as a weight denoting
the importance of test ti in the calculation of the model. A test
ti is a support vector if |αi| > 0. Otherwise, it is a non-support
vector, meaning that it is not used in the calculation. The ρ
is a constant denoting the boundary of the measured outlier
value for a test T . If M(T) < 0, T is deemed dissimilar to
the simulated tests t1, ..., tm. The more negative the M(T) is,
the more dissimilar the test T is to t1, ..., tm. Given a set of
un-simulated tests T1, . . . , Tn, let M(Tj) be the most negative
value computed by the model. Then, test Tj is the most novel
test selected by the model.

The function K(T, ti) is called a kernel function used to
measure similarity between T and ti, i.e. a pair of tests. The
novel tests selected by a SVM model highly depend on the
definition of the kernel function. The kernel function dictates
the perspective of what novelty means.

Suppose our objective is to cover a set S of coverage items.
Suppose test T covers the subset ST . Suppose test ti covers
the subset Sti . Intuitively, the similarity between T and ti can
be measured as |ST∩Sti

|
|ST∪Sti

| . For ti, Sti is known. However for
T , ST is unknown because it has not yet been simulated.

The SVM one-class is a kernel-based learning method [15].
Such a method consists of two components, a kernel function
used to measure similarity between a pair of samples and

an optimization engine used to build the model. Figure 3
illustrates the learning approach.

Fig. 3. Illustration of kernel-based learning
The SVM one-class algorithm concerns how to find the

best values for α1, . . . , αm and ρ, based on a given kernel
function. As shown in Figure 3, such an algorithm access
the kernel function by querying the similarity between a pair
of samples xi, xj . In application, one can alter the kernel
definition without changing the SVM algorithm in order to
influence the model building process.

B. The coverage-independent graph-based kernel

Developing an appropriate kernel is at the core of applying
the kernel-based learning algorithm. In our application, tests
are assembly programs. Hence, the kernel function K() needs
to measure similarity between a pair of assembly programs.
The work in [2] proposes a graph-based kernel that computes
a similarity measure by analyzing two assembly programs. It
is important to note that such a graph-based kernel does not
rely on any coverage information by a test in the calculation.
Hence, it is a coverage-independent kernel.

Fig. 4. The framework of computing graph-based kernel

Figure 4 illustrates the graph-based kernel. Each assembly
program is first converted into a program flow graph, a
directed graph capturing the possible execution flows of the
program. Then, the kernel calculates the similarity between
two programs based on the graph edit distance (GED) of
the two graphs. The larger the distance is the more dissimilar
the two programs are. The GED is measured as the minimal

103

cost of using a number of operations to transform one graph
to the other. These operations include insertion, deletion,
and substitution of vertices and edges. Each operation when
performed has a cost value. The cost is defined in a cost table.
For example, the cost of substitution of an addition instruction
to a subtraction is smaller than the cost of substitution of
an addition to a load/store instruction. This is because both
addition and subtraction utilize the same execution unit while
the load/store instruction utilizes the load-store unit.

Because the graph-based kernel is coverage independent, for
a given cost table the process of building the model is fixed and
consequently the novel tests detected by the model are fixed.
This means that in order to apply the graph-based kernel to
a given scenario, it is important to have a proper cost table.
This cost table can be design dependent, unit dependent and
coverage metric dependent. While this provides the flexibility
to tackle a variety of scenarios, it can also be a challenge for
its user to develop a proper cost table in practice.

C. Model building and novelty detection

Fig. 5. The framework of graph-based kernel

Figure 5 illustrates the model building and novelty detection
processes. In model building, a model is built on a set of
simulated tests. In novelty detection, the model is applied to
a set of un-simulated tests to calculate an outlier measure for
each test. These measures are used to rank tests. The most
outlying k tests are selected and simulated. For example, the
process is iterative as shown in Figure 1 where in each iteration
the most outlying k tests are selected for simulation.

D. Experiment results

The novel test detection framework using the graph-based
kernel approach is implemented and integrated with the in-
house simulation environment. Discussions in this section
focus on the example shown in the first plot in Figure 2 before,
i.e. the case with 2000 test programs for the CFX unit.

The novel test detection is applied iteratively where each
iteration selects 30 tests to simulation from the pool of
un-simulated tests. Figure 6 compares the coverage curves
achieved with and without the novelty detection. The curve
without is the same as that shown in Figure 2 before.

Without the novel test detection, the original simulation
achieves a maximal coverage with 1930 tests. With the novel
test detection, the same coverage is achieved using 190 tests, a
90% saving (i.e. 1- 190

1930). The simulation time of 2000 tests is
more than a day (using a single machine). This means that with
the novel test detection, a day of single-machine simulation
time can be reduced to less than two hours.

One may notice the huge coverage jump in the original
simulation at around the 1930th test. This indicates a special

Fig. 6. Comparison of coverage curves with and without novelty detection

test whose characteristic is quite different from that of others,
i.e. involving a dramatically different sequence of instructions.
This might make the novel test detection problem easier. To
assess the impact of this special test on the novel test detection,
we conduct a different experiment by removing this test from
consideration. In this revised experiment, we consider only the
first 1800 tests.

Fig. 7. Comparison of coverage curves with and without novelty detection
based on only the first 1800 tests in Figure 6

Figure 7 shows the results with and without novel test
detection based on the 1800 tests. Observe that in this case,
the novel test detection can still provide a 60% saving (i.e. 1-
520
1300). The figure also confirms that the existence of the special
test does make the novel test detection more effective.

IV. KERNEL BASED ON ESTIMATED COVERAGE

A. Disadvantage with the graph-kernel approach

As discussed in Section III-B, the major disadvantage with
the graph-based kernel approach is in the manual imple-
mentation of the cost table. Figure 6 and Figure 7 show
promising results. However, these results were not obtained
without noticeable effort to develop the cost table for verifying
the unit. Such a development may take days or weeks to
understand the behavior of each instruction with respect to
the intended coverage space based on the target unit and/or
design. Although one may argue that the development effort
can be seen as a one-time cost, in practice, it represents a
major obstacle for the acceptance of the approach.

B. Coverage-based kernel

To ease the use of the novel test detection approach,
what we need is a new way to compute the similarity with
minimal manual involvement. This motivated us to develop
an alternative kernel method based on estimated coverage.

104

Recall from the discussion in Section III-A that a novelty
detection model is of the form: M(T)=

∑m
i=1 αiK(T, ti)−ρ

where t1, . . . , tm are simulated tests. Such a model is learned
based on t1, . . . , tm to decide the values on α1, . . . , αm and
ρ. To calculate the similarity between a pair of simulated tests
ti, tj , i.e. denoted this kernel as Kc(ti, tj), we can simply
let Kc(ti, tj) =

|Sti
∩Stj

|
|Sti
∪Stj

| , where Sti and Stj are subsets of
covered items by ti and tj , respectively. Note that ti, tj are
simulated tests and hence, Sti and Stj are known. Such a
calculation can be based on a given set S of items to cover in
the simulation. Hence, the kernel calculation only depends on
the selection of S that is much easier to obtain than the cost
table. For example, S can be the toggled lines in a specific
module of interest. As another example, S can be a set of
hard-to-cover toggled lines after some initial simulation.

Fig. 8. The framework of coverage-based kernel

Figure 8 illustrates the framework using the coverage-based
kernel. In model building, a coverage-based kernel works well
because the true coverage of each simulated test is available.
In novel test detection, the model M is applied to compute an
outlying measure for each un-simulated test T . This requires
computing Kc(T, ti) for each support vector test ti where the
true coverage of T is not yet known. Hence, to enable the
approach, we require a method to estimate coverage for an
un-simulated test T .

C. Estimating coverage before simulation

The idea to estimate the coverage of an un-simulated test
is simple. Figure 9 illustrates the idea.

Fig. 9. Illustration of coverage estimation flow

For each single instruction, we randomly instantiated h
instances using the constrained random test generation frame-
work. In the experiments, we had h = 100. These 100
instances were simulated and their coverages were recorded
in a database. There are 600+ instructions defined by the
PowerPC ISA. It took about 250 hours to build the entire single

instruction coverage database. The the storage requirement is
about 480GB. The simulation time represents a one-time cost
for the approach.

For a given un-simulated program T consisting of a se-
quence of instructions, for each instruction I we retrieve the
coverage from the database based on the instruction instance
that is closest to the instruction I . This closeness is decided
based on an indexing function. We implemented the indexing
function to look for the closest instruction instance based on
Hamming-distance calculation between the operand values of
the instruction I in T and the operand values of the instruction
instances stored in the database. For each instruction I in T ,
the indexing function decides the closest instruction instance
in the database. Then, the corresponding coverage is retrieved
and used for I . To estimate the coverage of T , we simply take
the union of all the retrieved coverages.

It is important to note that using the union operation
to estimate the coverage presents a major limitation to the
approach. This limitation will be discussed in Section VI later.

D. The accuracy of coverage estimation

To give an idea on the accuracy of the coverage estimation
method, Figure 10 shows a result based on the 2000 test
programs used in the experiment in Figure 6. The x-axis
shows the accuracy measured in terms of the percentage of
overlap between the estimated coverage and the true coverage
of a test program. The average estimation accuracy is around
75% and is far from being perfect. Later in the experimental
section IV-F, we will show that this accuracy is sufficient for
novel test detection to be effective.

Accuracy

o
f te

sts

Fig. 10. Histogram of estimation accuracy of 2000 tests

E. Dynamically adjust the coverage base set S

In Section IV-B, we discuss the flexibility of the coverage-
based kernel method. The coverage is estimated based on a
set S of coverage items where this set can be flexibly defined.
We call such a set the coverage base set.

Recall that novel test detection is an iterative process.
Hence, ideally in each iteration the perspective of novelty
should be defined with respect to the uncovered items. In other
words, the novelty of a test should be evaluated based on its
chance to provide coverage on the uncovered items.

Figure 11 illustrates the iterative process. Initially, a set
of tests T1, ..., Tn are simulated. Then a novel test detec-
tion model M0 is learned from the coverage results of

105

Fig. 11. An ideal iterative process with novel test detection

T1, ..., Tn. When applying M0 to select the next n novel tests
Tn+1, ..., T2n, we would like to cover the uncovered area in the
design. To achieve this effect, we can perform the following
adjustment on the coverage base set S.

Initially, suppose the set S contains p items c1, . . . , cp. Let
each item ci be associated with a weight wi initialized as 1.
We calculate the coverage as

∑
wi for all i such that ci is

covered by a test. Every time ci is covered, wi is adjusted to
wi/a where a is a constant such as a = 2. Such a weight
adjustment scheme depreciates the importance of a covered
item gradually.

Similarly, after the first iteration, a novel test detec-
tion model M1 is learned based on all the simulated tests
T1, ..., T2n. This model M1 is used to select the next n novel
tests T2n+1, ..., T3n for hitting the uncovered area.

It is important to note in model building, those uncovered
items do not participate in the coverage-based kernel calcu-
lation. This is because in model building, the true coverage
of simulated tests is used and an uncovered item is skipped
in the coverage calculation. When the model is applied to
estimated coverage for an un-simulated test, an uncovered item
may participate in the kernel calculation. This is because it
is possible that the instruction instances retrieved from the
database can hit the uncovered item.

F. Results compared to the graph-based kernel method

Fig. 12. Comparison of coverage curves with and without novelty detection
using the coverage-based kernel; The same example shown in Figure 6 before

Figure 12 shows the result based on the same example
shown in Figure 6 before. Again, each iteration the top 30

novel tests are selected for simulation. We see that with the
novelty detection, only 400 tests are required to achieve the
same coverage of using 1930 tests in the original simulation
run, an 80% saving. Comparing this result to that shown in
Figure 6, we observe the effectiveness is not as good as before.
However, 80% remains a significant saving.

Fig. 13. Comparison of coverage curves with and without novelty detection
using the coverage-based kernel; The same example shown in Figure 7 before

Figure 13 shows the result based on the same example
shown in Figure 7 before, i.e. using only the first 1800 tests by
removing the one special test giving the big coverage jump at
the 1930th test in the original simulation run. We see that with
the novelty detection, only 220 tests are required to achieve the
same coverage of using 1300 tests in the original simulation
run, an 83% saving. Comparing this result to the 60% saving
shown in Figure 7, the effectiveness is better than before.

G. Result on simulation of 10K tests

Fig. 14. Comparison of coverage curves with and without novelty detection
based on the middle plot example shown in Figure 2 before

Figure 14 demonstrates the effectiveness of novel test
selection using the coverage-based kernel for the 10k tests
simulation example shown in Figure 2 before. Without novelty
detection, the maximal coverage of the original simulation
run is achieved with 5950 tests. With novelty detection, the
same coverage is achieved using only 250 tests, or roughly a
96% saving. Simulation of the 5950 tests would have taken
more than 4 days of single-machine simulation time. With the
novelty detection, this time is reduced to less than 6 hours.

H. Two additional results

To show that the novelty detection approach can work well
on tests based on a focused instruction base, we conducted
an experiment using a test template based on only 6 CFX
instructions. 2000 test programs were instantiated each with

106

50 instructions and an initial state. Figure 15 shows the results
with and without novelty detection. Without the novelty de-
tection, the original simulation achieves the maximal coverage
with 1720 tests. With the novelty detection, the same coverage
is achieved with only 100 tests, i.e. a 94% saving.

Fig. 15. Results based on 2000 tests instantiated from 6 CFX instructions

To show that the novelty detection can also work well
on selected coverage points, we conducted an experiment by
focusing on the 200 hard-to-cover points in the CFX unit.
2000 tests of 50 instructions were simulated in the original
run. Without the novelty detection, the original simulation
achieves the maximal coverage with 1930 tests. With the
novelty detection, the same coverage is achieved with only
100 tests, i.e. a roughly 95% saving.

Fig. 16. Results based on 200 hard-to-cover points in CFX

V. UNDERSTANDING A SPECIAL TEST

Figure 12 earlier shows that the special test causing a cover-
age jump at about the 1930th test in the original simulation is
captured by novel test detection within the first 100 tests. It is
interesting to understand why the special test can cause such
a coverage jump. To obtain this understanding, we employ a
feature-based diagnosis approach.

A. Using a simple feature-based diagnosis scheme

In a feature-based diagnosis approach, a set of features are
used to encode the characteristics of a sample (in our case
a sample is a test). This encoding transforms each sample
into a feature vector. Then, by analyzing the feature vector of
a special sample against other non-special samples, we can
extract rules to explain the unique property of the special
sample, e.g. the special sample satisfies the rule and all other
samples do not. For the rule extraction analysis, one can
use a decision tree algorithm [16] or the subgroup discovery

algorithm [17]. An example of feature-based diagnosis of
design-silicon timing mismatch was presented in [18]. In our
work, we apply the approach to analyze the special test to
understand its specialty.

B. Manual test template modification

We implement a simple feature-based diagnosis scheme to
understand the special test in Figure 12. We defined a set
of features based on instruction types, operand values and
the changes of those values in a program to describe the
characteristics. We utilize the simple feature set to analyze
the special test. The extracted rules are manually inspected
and used to modify the test template trying to produce more
tests similar to the special test.

Fig. 17. Improving coverage by test template refinement

Figure 17 shows result of this test template modification.
After simulation of the first 100 tests, the special test that
results in a coverage jump is identified. After understanding
the special test with the help of the simple feature-based
diagnosis scheme, the test template is manually modified to
produce additional tests. Observe that the additional 180 tests
are able to improve the coverage to exceed that achieved by
the original 2000 tests. The y-axis is normalized based on the
maximal coverage achieved and that is why the best coverage
shown is 100%. Note that this maximal coverage is also the
best coverage achieved across all experiments shown in this
work for the CFX unit and all coverages shown earlier are
normalized based on this best coverage.

VI. LIMITATION OF THE SINGLE-INSTRUCTION DATABASE

Section IV-C discusses the method to estimate coverage
for an un-simulated test program and points out its major
limitation is in the use of the union operation to compute
the coverage (also see Figure 9 for this union operation).
Because the estimated coverage of a test program is the union
of individual estimated coverages of all the instructions in the
test program, such an estimated coverage does not consider
coverage contributed by multiple instructions collectively. This
limits the application of novelty detection to, for example,
the load-store unit consisting of multiple finite-state machines,
arrays and register files. For example, a data-forwarding event
occurs when Read-After-Write hazards are present. Using
the single-instruction database would be unable to properly
estimate the coverage given by a test containing such hazards.

107

The LSU is one of the most complex units in the design.
It is responsible for scheduling and managing the out-of-order
memory operations. To illustrate the idea for overcoming the
limitation we focus on an experiment based on the data-
forwarding module used in the store queue. The result of
the original simulation run is shown in the third plot in
Figure 2. Below we discuss how to refine the novelty detection
implementation to capture those novel tests shown in the plot.

The idea is simple. To overcome the limitation of using
the single-instruction database, we build a database with a
large number of test program instances each consisting of three
instructions. Then, we use the coverage information stored in
this 3-instruction database to estimate the coverage of test pro-
grams with a longer length. The indexing function in Figure 9
needs to be modified. In other words, the estimated coverage
of a 10-instruction test becomes the union of coverages of
several 3-instruction instances retrieved from the database.

Figure 18 shows the result of applying this extension to
the particular example. Without novelty detection, the original
simulation achieves the maximal coverage with 2590 tests.
With novelty detection, the same coverage is achieved with
only 100 tests, a 96% saving. Again, the coverage shown on
y-axis is normalized based on the coverage achieved in the
particular example and hence, it is shown as 100%.

Fig. 18. Comparison of coverage curves with and without novelty detection
using extended coverage-based kernel based on the third example plot shown
in Figure 2

VII. CONCLUSION

In this work, we report the experience of applying novel test
detection in a company in-house constrained random test gen-
eration and simulation environment for a Power architecture-
compliant processor core. The first implementation is based
on the graph-based kernel method. While this implementation
can demonstrate 60-90% saving, its practical applicability
is limited because of the requirement to manually construct
the cost table. To overcome this limitation, a second imple-
mentation is proposed. This alternative approach is based on
a coverage-based kernel method. The effectiveness of this
approach is comparable to the graph-based kernel approach.
The alternative approach demands minimal user involvement
and hence is much more acceptable in practice. With the
second implementation, we demonstrate 80-96% in various
experiments. In one case, more than four days of single-
machine simulation time can be reduced to less than six hours.

We discuss two extensions based on the second implementa-
tion. The first extension uses feature-based diagnosis to help a

user to understand a special test identified early in a simulation
run. Then, the test template can be manually modified accord-
ingly to produce more tests similar to the special test. We show
that this modification can lead to a higher coverage using much
fewer tests than the original simulation run without novelty
detection. The second extension overcomes the limitation of
using the single-instruction database to estimate coverage. A
new database of 3-instruction instances is added to capture
coverage depending on multiple instructions collectively. The
effectiveness of this extension is demonstrated on the data-
forwarding module in the LSU with a potential 96% saving
in simulation time.

REFERENCES

[1] O. Guzey and et al., “Functional test selection based on unsupervised
support vector analysis,” in Design Automation Conference, 2008. DAC
2008. 45th ACM/IEEE, june 2008, pp. 262 –267.

[2] P.-H. Chang and et al., “Online selection of effective functional test pro-
grams based on novelty detection,” in Computer-Aided Design (ICCAD),
2010 IEEE/ACM International Conference on, nov. 2010, pp. 762 –769.

[3] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation
of hardware designs,” Design Test of Computers, IEEE, vol. 18, no. 4,
pp. 36 –45, jul/aug 2001.

[4] J. Yuan, C. Pixley, A. Aziz, and K. Albin, “A framework for constrained
functional verification,” in Computer Aided Design, 2003. ICCAD-2003.
International Conference on, nov. 2003, pp. 142 – 145.

[5] S. Fine and A. Ziv, “Coverage directed test generation for functional
verification using bayesian networks,” in Design Automation Conference,
2003. Proceedings, june 2003, pp. 286 – 291.

[6] I. Wagner, V. Bertacco, and T. Austin, “Microprocessor verification
via feedback-adjusted markov models,” Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 6, pp.
1126 –1138, june 2007.

[7] G. Squillero, “Microgp-an evolutionary assembly program generator,”
Genetic Programming and Evolvable Machines, vol. 6, no. 3, pp. 247–
263, Sep. 2005.

[8] K. Eder, P. Flach, and H.-W. Hsueh, “Inductive logic programming,”
S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad, Eds. Berlin,
Heidelberg: Springer-Verlag, 2007, ch. Towards Automating Simulation-
Based Design Verification Using ILP, pp. 154–168.

[9] H.-H. Yeh and C.-Y. Huang, “Automatic constraint generation for guided
random simulation,” in Asia and South Pacific Design Automation
Conference, 2010, pp. 613–618.

[10] Y. Katz, M. Rimon, A. Ziv, and G. Shaked, “Learning microarchitectural
behaviors to improve stimuli generation quality,” in Design Automation
Conference (DAC), 48th ACM/EDAC/IEEE, 2011, pp. 848 –853.

[11] L. Liu, D. Sheridan, W. Tuohy, and S. Vasudevan, “Towards coverage
closure: Using goldmine assertions for generating design validation
stimulus,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2011, march 2011, pp. 1 –6.

[12] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. John-
son, “Goldmine: Automatic assertion generation using data mining
and static analysis,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2010, march 2010, pp. 626 –629.

[13] O. Guzey and et al., “Increasing the efficiency of simulation-based
functional verification through unsupervised support vector analysis,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 29, no. 1, pp. 138 –148, jan. 2010.

[14] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[15] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
New York, NY, USA: Cambridge University Press, 2004.

[16] J. R. Quinlan, C4.5: programs for machine learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[17] N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski, “Subgroup discovery
with cn2-sd,” J. Mach. Learn. Res., vol. 5, pp. 153–188, Dec. 2004.

[18] P. Bastani and et al., “Diagnosis of design-silicon timing mismatch with
feature encoding and importance ranking - the methodology explained,”
in IEEE International Test Conferencel, oct. 2008, pp. 1 –10.

108

