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Abstract
Customer returns are defective parts that pass all func-

tional and parametric tests, but fail in the field. To prevent
customer returns, this paper analyzes wafer probe test data
and tries to understand what it takes to screen them out dur-
ing testing. Because these parts pass all tests, analyzing
their signatures based on the original test perspective does
not make sense. In this work, we search for a novel test
perspective where the test signatures from parametric mea-
surements can be used to separate the returned parts from
the rest of population. Our study shows that in order to ef-
fectively screen customer returns during wafer test, a mul-
tivariate screening methodology is desired. This study is
based on analyzing over 1000 parametric wafer probe tests
and dies from seven lots, each lot containing one returned
part. We demonstrate that analyzing customer returns from
a multivariate test perspective leads to robust and conser-
vative results.

1 Introduction
In a market that requires high quality products with near

zero defective parts per million (DPPM), the effects of a
test escape can be significant in terms of debug and diag-
nosis costs. More importantly, an excessive number of test
escapes will damage a company’s reputation and can lead
to missed business opportunities. For this reason, quality
is extremely important and often, it outweighs the costs of
overkills. Examples are automotive products where a test
escape can have significant consequences.

To reduce DPPM to near zero, the logical first step is to
acquire a better understanding of customer returns. Tradi-
tionally, this is achieved by diagnosis to a root cause. This
work does not follow a root cause analysis approach. In-
stead, our objective is to understand customer returns from
a behavioral point of view where its behavior is reflected in
the values of parametric measurements. We call this a test
perspective. Instead of focusing on the root cause, we try
to understand the behavior of customer returns in order to
develop a new test strategy to screen them in the future.

It should be noted that there have been several proposed
methods for improving the quality of parametric testing.

Generally, these methods employ test selection and/or some
statistical learning techniques to detect potential failures.
For example, the authors in [4] used test selection and out-
lier analysis to predict burn-in failures. First, a smaller set of
tests was derived from known failures which was then used
to compare dies residing within the same wafer residuals in
order to predict other defective devices. This analysis was
based on single test measurements to ensure simplicity and
applicability in practice.

As another example, the work in [7] analyzed a dataset
of functional and parametric results for screening RF de-
vices. A subset of important tests was extracted and ma-
chine learning algorithms were used to identify defective
devices. This screening strategy was effective and the work
was a good comparison of various algorithms.

In this work, the problem context is different. First, the
product is a SoC for the automotive market where a large
portion of the design is memory and analog. Second, we
analyzed seven customer returns that passed a comprehen-
sive testing process where the quality requirements are very
high. In other words, the DPPM was already close to zero,
but not exactly zero. Finally, the seven customer returns be-
long to different lots and we had access to over 1000 para-
metric wafer probe test measurements for each die across
the seven lots.

It is important to clarify the problem context for two rea-
sons. First, a different context may imply a different prob-
lem. For example, the challenges in analyzing a situation
with 250 DPPM with the goal of pushing to 100 DPPM
could be very different from the challenges of pushing from
50 DPPM to 10 DPPM. Similarly, analyzing a SoC could
be different from analyzing an analog device. Second, when
applying the findings in this work, one should carefully con-
sider the context for their respective application. For exam-
ple, in a different DPPM range, a customer return can be-
have differently than the ones studied in this work. Hence,
one should be cautious and check the assumptions in this
work before applying our methods.

Instead of jumping into the development of a screening
methodology, we first ask the key question: “How did we
miss the seven customer returns?” After all, the testing was
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very comprehensive. This key question leads to the follow-
ing three questions:

• Is it because we still lack the right test(s)?
• Is it because we did not set the test limits correctly?

Were some of the limits set too conservatively?
• Is it because we did not look at the tests from the cor-

rect perspective? If so, what is the correct perspective?

Section 2 investigates these three questions. Our con-
clusion will be that we do not need more test(s), nor test
limit adjustments, as long as the screening takes a multi-
variate perspective, i.e. making decisions based a collec-
tion of tests. Section 3 describes the process of selecting
relevant tests, followed by section 4 that explains the role
of test selection in multivariate outlier analysis. Section 5
discusses experimental results to show how such an outlier
model works. Section 6 concludes.

2 The Three Questions
Questions 2 and 3 should be analyzed first because yes

to either question means additional test(s) are not needed.
In the following, we discuss these questions based on seven
lots of data each consisting of ∼12,000 dies.

Prior to analysis, the test data was cleaned by remov-
ing all dies that failed during wafer probe testing and those
with missing measurements. The non-parametric tests were
also removed. Each measurement value was normalized
to zero mean and unit variance, which ensures compatibil-
ity between different test types. The resulting parametric
test set contains various types of measurements including
opens, shorts, leakages, Idd and memory tests.

Figure 1. Gaussian is not a good assumption at the tail

2.1 How effective is using a kσ rule?
Due to a lack of knowledge, the parametric test limits are

often set using the empirical kσ rule, where an example may
be k = 3, 6, etc. Figure 1 shows the behavior of a particu-
lar parametric measurement for one lot of dies. Assuming a
Normal distribution and setting a 4σ limit, we would expect
to see 1 die beyond this limit. However, we observed 94
dies. Keep in mind that all of these dies passed wafer test-
ing (not necessarily after final testing), including the one

customer return. Hence, a 4σ test limit is too aggressive
and it would result in the overkill of 94 good dies.

For this reason, test limits are usually set with a much
larger σ to minimize overkill. Hence, the customer return
may have been missed due to this conservatism.

Customer applied to applied to only specific test info
Return all tests the specific test σ Type

1 43.19% 0.71% -3.02 Memory
2 42.41% 0.03% 3.45 Memory
3 13.02% 0.20% 8.08 Voltage
4 3.20% 0.20% 19.43 Leakage
5 5.33% 0.48% 4.80 Leakage
6 19.90% 0.23% 6.23 Leakage
7 27.26% 1.02% 4.01 Current

σ found with the best test to minimize overkill and screen out the return

Table 1. Overkill % based on applying the σ rule

Table 1 shows our hypothesis is not true. For each re-
turned part, we found the σ value for each parametric test.
For example, 5σ means the measured value using the test
is at the 5σ point of the distribution whose mean and σ are
calculated based on all dies in the lot. We then found the
specific test whose σ value is the largest and used this value
as a kσ rule. For example, customer return #1 in Table 1 has
a value of -3.02σ corresponding to a memory test.

Suppose we apply the -3.02σ rule to the specified test
only in order to screen the dies (all dies with measured val-
ues whose absolute value ≥ 3.02σ are screened out), we
would have an overkill of 0.71% in the lot, which is ∼80
dies. This overkill is shown in the third column of Table 1.

This scenario assumes that we know which test is the
best to use for the kσ rule. Suppose we do not know this
and we applied the same kσ rule to all tests. In this case,
the second column of the table show the overkill % for each
lot containing the customer return.

Table 1 shows that with a kσ rule, we cannot screen
out a customer return without incurring significant overkill.
Based on column 3, it is not desirable to capture customer
returns by adjusting test limits. Using part #7 as an exam-
ple; even in the best case we would have screened out more
than 110 good dies.

2.2 Multivariate test perspective
In Table 1, we are examining the tests one at a time.

What if we examine two or three tests collectively? Fig-
ure 2 shows such results based on customer return #4. In-
terestingly, the returned part looks more like an outlier when
analyzing tests collectively, i.e. it’s easier to separate from
the rest of the dies.

Figure 3 shows that a hyperplane can separate customer
return #5 from all good dies in three test dimensions. Based
on these two figures, a customer return can be screened out
with minimal overkill when examining the data using the
right combination of tests. The big question is: From more
than 1000 tests, which tests should we use?
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Figure 2. Moving to multivariate test perspectives
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Figure 3. Hyperplane Separating the Return from
Other Dies in 3 Test Dimensions

3 Learning the Relevant Tests
Based on the analysis above, we need to know the rel-

evant tests in order to capture the customer return. In ad-
dition, it seems that the more tests we use, the more likely
we are to be successful. For example, two tests are suffi-
cient for return #5 while three tests are enough for return
#4. Based on Table 1, we may conjecture that we will need
even more tests for customer return #7.

The analysis also suggests a screening methodology to
detect dies with similar behavior as the customer return.
This method is based on the ability to learn a set of relevant
tests from a returned device and show that the customer re-
turn can be identified as an outlier among all other dies in
the lot. Using the same set of tests, outlier analysis can be
performed on dies from future lots in order to identify po-
tential customer returns that behave similar to the one used
for learning.

To realize such a methodology, the first step is to have
a learning method that can learn from the test data and se-
lect the relevant tests. The requirement for such a method
depends on another question: Do we need to find a spe-
cific subset of tests relevant to the returned device for the
outlier model to work effectively? In other words, how pre-
cise should the test selection process be? If we need a very
precise set of tests; it can be challenging to develop such a
learning method.

3.1 SVM and Chi Square
Given test data for the customer return and ∼12K dies,

our goal is to rank the importance of the ∼1000 tests based
on their ability to differentiate the returned part. This can
also be thought as the following problem: Given two classes
of samples and a set of features that describes the samples,
rank the importance of the features in terms of their contri-
bution to separate the two classes. This is commonly known
as a feature ranking problem.

In the context of timing analysis, authors in [8] apply
feature ranking to rank cells and nets by their contributions
to path timing. This ranking is based on the linear Sup-
port Vector Machine (SVM), which is a binary classifica-
tion approach described in [8]. Using the C-Support Vector
Classification (C-SVC) algorithm with a dot-product kernel
(i.e. a linear kernel) [5], we find an optimal hyperplane in n
dimensions that best separates the two classes of samples.
In our context, n is the number of tests examined and the
samples are the dies. For example, Figure 3 shows a hyper-
plane in 3 dimensions. This hyperplane can be written as
f(T1, T2, T3) = w1T1 +w2T2 +w3T3 + b where b is the
constant defining the location of the hyperplane, i.e. where
it intercepts the T2-T3 plane.

For a linear model, the normal weight vector W⃗ of the
hyperplane encodes the importance of each test [10]. Sim-
ilarly, the components w1, w2, w3 of the weight vector can
be thought as the importance of tests T1, T2, T3, respec-
tively. These components describe how much the hyper-
plane is tilted in the direction of the test in order to correctly
classify the customer return. In Figure 3, tests T1 and T3
are more important than T2 because the weight vector is
pointed toward test T1 and T3. Test T2 is irrelevant since
the hyperplane is almost parallel to the T2 axis [10].

Another common method for ranking features is the Chi-
Square method [2]. Chi-Square is an algorithm that does not
build a binary classification model as does a linear SVM.
Instead, it calculates the importance of each test as a chi-
square statistic. This statistic tries to calculates the amount
of separation between two classes of dies using a single test,
i.e. measuring its separation power. Note that this sepa-
ration power is measured based on each test individually.
Hence, this method ignores correlation among tests.

3.2 Test Selection
SVM and Chi-Square can output the test importance for

each customer return. Given such a ranking, one still needs
to select a subset of tests. For example, Figures 2 and 3
show how two and three tests can separate customer returns.
These tests were manually selected based on the outlying
behavior of the return. When using SVM or Chi-Square to
select tests automatically, we can think of various questions:

• Will the top two or three tests, ranked by either algo-
rithm, match our manual selection?
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• If not, how do we determine the size of the test set so
the desired tests are included?

• Do we need to have specific subset of tests for outlier
analysis to work? If not, how many “irrelevant tests”
can we include before outlier analysis breaks down?
i.e. how flexible must test selection be for outlier anal-
ysis to work?

• Do the SVM and Chi-Square rankings agree?
The following discussion is centered around these ques-

tions and will demonstrate several interesting points based
on our data. First, results from SVM and Chi-Square usu-
ally do not agree. If we focus on the top two or three tests,
their rankings do not agree with our manual ranking. At
first, this was seen as a critical barrier but we found that for
outlier analysis to work (i.e. to identify a customer return
as a top outlier), it does not require the use of specific tests.
In fact, there is a high degree of flexibility in test selection,
which is enabled by the outlier analysis. This means that
we do not have to worry about selecting an exact subset of
tests. Instead, we can include many irrelevant tests. This
is an important property to note because it enables the de-
velopment of a practical methodology that can learn from
returned parts and screen out similar dies in the future.

If there is a high degree of flexibility when selecting
tests, why not include all tests? Later, we will show that
this flexibility is bounded. Hence, if we select a test set that
is too large, outlier analysis will lose its effectiveness.

Figure 4. Test Importance for the Top 100 Tests
To demonstrate the output of the test ranking algorithm,

Figure 4 shows the normalized importance of the top 100
tests using SVM ranking for customer return #1. From the
weight curve in Figure 4, we can see that the importance
starts to level out after the first 10 tests.

The behavior of customer return #1 is shown in Figure 5,
where the tests are shown on x-axis. The tests are ordered
by their importance, which is determined by the Chi-Square
ranking this time. The measured values for each test are
normalized by the variance. The behavior of the customer
return is shown (red). The average measured value (mean)
of each test, across all dies in the same lot, is shown (dark
blue). One standard deviation (one σ) on either side of the
mean is shown (light blue) for each test. A clear trend can
be observed where the customer return deviates further from

Figure 5. Effects of Diminishing Test Importance

Figure 6. Return #1 as an Outlier on top 15 Tests

the mean in the higher ranked tests (on the left). Also, the
measurements for the customer return reside within 3.02 σ
limit as was also shown in Table 1.

Figure 6 zooms in on the top 15 tests. The customer re-
turn curve (red) is clearly different from the expected trend,
which is shown as the mean±1σ band (blue). From this fig-
ure, the outlying behavior of the returned part is easily seen.
Since the customer return’s measurements are within ±3σ,
this outlying behavior is only seen when examining the 15
tests collectively. Hence, this is a multivariate outlier.

4 Multivariate Outlier Analysis
It is important to note the following properties. If we

present Figure 6 by removing the tests 11-15, it does not
alter our ability to declare the customer return as an out-
lier. On the other hand, if we consider all tests in Figure 5
together, it is not clear if the customer return is an outlier.
These two figures hint at an interesting property. There is
a certain degree of flexibility in test selection that allows a
customer return to be identified as an outlier. In the follow-
ing section, we will illustrate this property further.

In this work, multivariate outlier analysis is performed
using the one-class SVM algorithm on a subset of rele-
vant tests. We use the one-class ν-SVM algorithm [6] with
a Gaussian kernel [9] and a modified version of the open
source LibSVM software package [1]. All experiments
were performed under the software framework RapidMiner
[3]. Here, we do not intend to describe the details of the out-
lier analysis algorithm. Instead, we are interested in study-
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ing the effects of test selection on outlier analysis.
To study this impact, we perform the following exper-

iments. For each customer return, we apply a ranking
method to rank the tests. From this ranking, we select the
top k tests and create a dataset Dk. Each test in Dk con-
tains the measurements for all the dies within the lot. Out-
lier analysis is performed on Dk using the one-class SVM
algorithm. The results of outlier analysis is a ranking of the
dies. Using these results, we identify the rank Rk of the cus-
tomer return. In the best case we would have Rk = 1 and
in the worst case we would have Rk ≈ 12,000. In general,
a Rk ≤ 20 is considered very good.
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Figure 7 shows the Rk (y-axis) for k = 2 . . . 300 tests
(x-axis) where the x-axis is in log scale. In this image, the
results are based on Chi-Square test ranking and each cus-
tomer return corresponds to a curve. In general, the trend
says that if we use too few or too many tests, the results are
not good. On the other hand, there is not much difference
between using 10 to 50 tests.

For returns #1, 3, 4, 5 and 6, using a few tests is fine and
using more (up to 50) does not hurt. This is not true for
return #7, which requires using more than 10 tests. From
Figure 7 we see that return #7 is a high-dimensional out-
lier (≥ 10 test dimensions). Figure 8 shows similar results
based on SVM test ranking. It can be clearly seen that SVM
results do not exactly agree with Chi Square results, but a
similar trend exists.

Customer Return 1 2 3 4 5 6 7
SVM; k,Rk = 20,5 20,4 3,3 10,3 5,1 5,4 10,12

Chi-Square; k,Rk = 20,4 3,12 10,1 5,2 3,1 10,4 20,3
Table 2: k that gives the smallest Rk (k,Rk) in Figures 7 and 8

Customer Return 1 2 3 4 5 6 7
SVM; Rk = 6 6 4 3 3 6 12

Chi-Square; Rk = 12 28 1 3 3 4 4
Table 3: Rk Based on top 20 tests in Figures 7 and 8

Table 2 shows the k value that gives the best Rk in Fig-
ures 7 and 8. For example, using SVM ranking on customer
return #1, with k = 20, the returned part is identified as
the 5th outlier (Rk = 5) according to the outlier analysis
(“20,5”). To achieve the best result for different returns, we
would need different numbers of tests. The best Rk is usu-
ally small except for return #7 using SVM and return #2
using Chi Square, where both are ranked Rk = 12.

Table 3 shows results (Rk) when selecting the top 20
tests (fix k = 20) for all returns. These results are similar
to the best Rk presented in Table 2. This method further
demonstrates the flexibility of the test selection because a
small variation on the size of the test set does not have a
significant impact on outlier analysis.

5 Screening Potential Returns
Suppose we learn the 20 most relevant tests for a cus-

tomer return and verify that outlier analysis can rank the
returned part as a top outlier. Suppose we take the 20 tests
and perform outlier analysis on another lot. Can we identify
dies that behave similar to the customer return?

This question can be studied from two perspectives:
How similar is a die’s behavior to the customer return and
how much variability exists from one lot to another. In the
following experiments, we report various results using cus-
tomer return #1 and SVM test ranking.

In the first experiment, we take all of the test measure-
ments from the customer return and inject iσ noise on each
value in order to make a “simulated customer return.” This
simulated return is put back into the dataset and we perform
outlier analysis on the new dataset to see how the simulated
return is ranked. Table 4 shows results for i = 0, 0.5, 1.0
and 1.5. For i = 0, the simulated return is the original
customer return. The experiment is iterated 100 times thus
simulating 100 returns.

In Table 4, “Rank” is the average Rk across 100 simu-
lated returns. “E” is the number of simulated returns whose
ranks exceed 50, i.e. assuming top 50 outliers are screened
out, these dies would become test escapes. It is interest-
ing to see (the “Rank” column) that using 2 tests does not
tolerate the noise injected on the simulated returns as the
average Rk is large. Using 2 tests can capture some sim-
ulated returns, but many (23-35) have a Rk > 50 and thus
escapes detection. This shows that using 2 tests is not ro-
bust. This is still more effective than using 300 tests where
outlier analysis is neither robust nor effective in capturing
simulated returns.
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Noise
2 Tests 10 Tests 100 Tests 300 Tests

Rank E Rank E Rank E Rank E
0.0 σ 13.0 0 5.0 0 18.0 0 147 100
0.5 σ 294.8 23 6.0 0 16.7 0 415 100
1.0 σ 2392.3 35 5.6 0 14.7 0 347 100
1.5 σ 2545.6 32 4.7 0 10.9 0 205 88

Rank: Average Rk over 100 simulated returns, E: Number of Escapes
Table 4: Simulating Failures via Noise Injection

If we use 10 to 100 tests, the average Rk of the simu-
lated returns does not change much with respect to different
amounts of injected noise. Based on the results in Table 4,
if we want a robust solution that detects potential returns
whose behavior is similar to the known customer return, we
cannot use too few or too many tests.

In the second experiment, we randomly select one good
die and change its test measurements for only the top 2 tests
based on SVM ranking. In particular, we replace the mea-
sured values of this good die with values similar to the cus-
tomer returns. This die is added back to the dataset and out-
lier analysis is performed using various numbers of tests.
Since the altered die is mostly good and behaves nominally
for all but 2 tests, we expect it to have a poor rank and it
should not be screened. The experiment was iterated 100
times and the results are shown in Table 5. According to this
table, when using 2 or 3 tests, the altered good die would be
classified as a top outlier and it would be screened. When
more tests are used, the rank increases and fewer altered
good dies are screened (20-33). Hence, using more tests
ensures conservatism by capturing dies that are most sim-
ilar to the customer return, which is a desired property to
avoid overkill.

2 Tests 3 Tests 5 Tests 10 Tests
Rank S Rank S Rank S Rank S

1 100 1 100 570 33 630 20
Rank: Avg. Rank of Altered Good Die, S: # of Altered Good Dies Screened

Table 5: Conservatism Study in Outlier Analysis

Table 6 repeats the experiments shown in Table 4 with
additional noise injected on the good dies. We altered the
good dies by injecting 2% random noise on all of the test
measurements. As it can be seen, the results in Table 6 are
similar to the results in Table 4. This shows that small ran-
dom variability across lots does not impact the effectiveness
of outlier analysis as long as we do not use too few tests.

Noise
2 Tests 10 Tests 100 Tests 300 Tests

Rank E Rank E Rank E Rank E
0.5 σ 429.6 25 5.1 0 17.7 0 407 100
1.0 σ 1794.2 35 5.1 0 17.1 0 352 100
1.5 σ 2594.6 37 3.2 0 15.3 0 211 88

Rank: Average Rk over 100 simulated returns, E: Number of Escapes
Table 6: Noise Injection on All Good Dies

In the last experiment, we take the top 50 tests learned
from one lot and perform outlier analysis on another lot.
Table 7 shows the results. If we learn from the returned
part in lot 1, outlier analysis on lot 5 is able to classify its
customer return as the 51st outlier. If we can tolerate 0.4%
overkill, we can capture this customer return. In another

case, we learn from the return in lot 2 and we can screen
out the customer return in lot 4 if we are willing to tolerate
0.7% overkill. It is interesting to note that among the top
outliers in lots 5 and 4, there were 4 and 10 dies actually
failed final test, respectively.

Train Lot Predict Lot Rank Overlap of top 50 tests
1 5 51 12
2 4 100 11

Table 7: Cross-lot Fortuitous Prediction

If we examine the top 50 tests learned from these four
lots individually, lot 1 and lot 5 share 12 tests and lot 2 and
lot 4 share 11 tests. This sharing may be used to explain the
cross-lot fortuitous customer return detection.

6 Conclusion
In this paper, we study how to learn from existing cus-

tomer returns and how to develop a methodology to screen
other potential customer returns. Findings, based on study-
ing seven customer returns from seven lots of data and more
than 1000 parametric tests, are: (1) Customer returns can be
effectively screened by multivariate outlier analysis. (2) To
perform such an analysis on a lot of dies, we must first de-
termine which relevant tests to use. (3) Relevant tests can
be learned from existing customer returns. (4) The selection
of relevant tests is not strict and has a degree of flexibility.
In fact, using too few tests is not robust. When using at
least 10 tests, outlier analysis becomes much more robust
and using up to 100 tests can still be effective. (5) Using
more tests, i.e. performing a high-dimensional outlier anal-
ysis, ensures both robustness and conservatism in capturing
potentially defective parts whose behavior is similar to the
returns we have learned from.
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