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Abstract—This work presents a case study of wafer probe test
cost reduction by multivariate parametric testset optimization for
a production RF/A device. More than 1.5 million tested device
samples across dozens lots and hundreds of parametric measure-
ments are analyzed using a new automatic testset minimization
system. Parametric test subsets are found that can be used to
predict infrequent wafer probe failures. Multivariate test models
are generated to justify removal of ineffective tests, screen failures
with minimal test cost, and demonstrate that some frequently
passing tests are safe drop candidates. The proposed method is
evaluated using parametric test data from an RF/A IC currently
in production, showing how to reduce test cost and uncover
tradeoffs between test escapes and overkills during high volume
wafer probe screening.

I. INTRODUCTION

As global demand for mobile devices grows, so does the
need for high quality and low cost volume testing of RF and
Analog (RF/A) dies. From past manufacturing experience, it is
known that wafer probe testing leads to early defect screening,
thus reducing packaging, burn-in, and final test costs [1][2][3].
Current state of the art RF/A wafer probe testing applies
hundreds of parametric tests to screen the vast majority of
defects early in the production flow, in an effort to reduce
subsequent manufacturing and test costs.

Parametric wafer probe testing faces many challenges as
RF/A devices shrink and target low-cost high-volume con-
sumer products. Testing of such devices is difficult and ex-
pensive due to measurement noise, large volumes of tests,
expensive probe cards, tester to tester variability, and difficulty
setting parametric test limits [4]. To reduce test time, and
therefore test cost, automatic test equipment (ATE) frequently
applies multi-site testing to probe 4–16 RF/A dies simultane-
ously, resulting in more throughput and consequently enables
continue-on-fail testing.

While parallel testing is effective at increasing throughput,
it does not tackle the key problem of test effectiveness. To
illustrate the problem, Figure 1 shows a Pareto plot of all
parametric test failures across dozens of production lots from a
current 65nm RF/A device. The left axis shows the number of
fails for each soft bin and the right axis shows the total percent
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Fig. 1. Pareto of Parametric Test Failures

of fails captured cumulatively. This figure demonstrates that
10% of tests capture 90% failures, while the remaining 90%
of tests capture only 10% of failures. In other words, 90% of
test effort only captures 10% of failures. This is an extreme
instance of the famous Pareto principle or 80:20 rule, where
80% effects can be attributed to 20% of the causes. We will
call the bottom 10% of failures the tail failures as indicated
in Figure 1.

Looking at Figure 1, one may ask: “Since we know how
to screen 90% of failures quite well, what would it take to
capture the remaining 10% with minimal test cost?” Namely,
what subset of tests that currently screen the bottom 10%
of tail failures can be used to distinguish between passing
dies and failing dies? The answer to this question depends
on optimizing test effectiveness when screening tail failures.
We will show that this question can be answered using large
volumes of parametric test data and multivariate test methods.

In recent years, multivariate testing, sometimes called adap-
tive or statistical testing, has been used to reduce test cost
and improve test quality [1][5][6]. Adaptive test is a general
term used to describe “methods that change test conditions,
test flow, test content, and test limits based on manufacturing
test data and statistical data analysis” [7]. Continue-on-fail
parametric tests are particularly well suited to multivariate
testing because they provide a complete set of real valued
measurements that can be combined and compared in many
ways to make a final pass/fail test decision. Returning to the
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problem in Figure 1, one may also ask: “What type of mul-
tivariate or statistical test mechanism is capable of screening
the bottom 10% of tail failures while keeping overkills to a
minimum using only a subset of tests?”

In this work, we present a case study to answer the above
questions and introduce three multivariate test methods for
reducing test cost. The case study is performed on parametric
wafer probe test measurements from over 1.5 million 65nm
RF/A devices across several dozen production lots. Multivari-
ate test models are developed based on the first 80% of lots
and their performance is evaluated on the subsequent 20%.
We propose an automatic testset minimization (ATM) strategy
which improves on parametric testset optimization introduced
by [8]. ATM is used to select the smallest subset of tests that
can screen the bottom 10% of tail failures using a multivariate
test perspective, thereby reducing test cost. The optimized
subset of tests is matched to each of the three following test
cost reduction strategies and their effectiveness is evaluated.

• Test Dropping Validation: Justify dropping a single test
ti by finding a multivariate test model that can predict
all ti’s failures using m other tests t1 − tm. This is a
conservative test dropping method with up to 100

m % cost
savings for products with high quality requirements.

• Single Multivariate Test Model: Drop 10%-50% of tests
by finding a single multivariate test model to screen all
tail failures. This is an aggressive test dropping method
for low cost products.

• Multi-Bin Multi-Model: Generate multivariate test mod-
els based on subsets of tests for each infrequently failing
bin, to reduce test cost by 15%-30%. Offers moderate test
dropping for consumer products.

The rest of the paper is organized as follows: Section II
discusses related works in test cost reduction and multivariate
testing. Section III describes the proposed automatic testset
minimization approach. Section IV explains three multivariate
test cost reduction strategies and their intended uses. Section
V describes the case study setup. Section VI discusses the
performance of developed multivariate test models and Section
VII concludes.

II. RELATED WORKS

Several recent works have proposed multivariate, statistical,
or adaptive test methods to minimize test cost and maintain test
quality [1][4][7][9]. Multivariate parametric testset optimiza-
tion was introduced in [8], where the authors found essential
parametric tests to help screen in-field or final test fails and
set better test limits early in wafer probe testing. It was shown
that multivariate testing with an optimized subset of tests could
achieve high screening accuracy with minimal overkill.

Correlation based signature analysis is used in [1] to screen
defective dies in wafer probe to reduce packaging and final test
cost. A general cost model is derived to expose the tradeoffs
between test escapes and yield loss while taking into account
expensive packaging. Simulation based results are presented
for a mixed signal SoC showing various tradeoffs for different
package cost, test escape, and yield loss requirements.

The challenge of testing a complex mobile phone SoC with
digital, RF, and mixed-signal components is discussed in [4].
The authors showed that mixed signal testing is expensive
and may cost 34%, while RF may cost 22%, of the total
test budget for a complex SoC. In addition, sensitive probe
cards for analog/RF measurements and testing of multiple
heterogeneous blocks in one test insertion are key challenges.
For complex SoC designs there may also be a lack of test
effectiveness since RF blocks are often custom designed, and
designers have a high interest in thoroughly testing each block,
resulting in longer test times.

Authors in [7] discuss an adaptive test flow which incor-
porates die-level traceability, information sharing between test
steps, integrated test databases, and test adaptation algorithms.
Adaptive testing is used to modify test intensity, test selection,
and test limits at different insertions in the test flow to optimize
cost versus DPPM levels. The authors highlight today’s lack of
easy access to test results across different insertions, and the
need for analysis tools capable of handling millions of dies,
yet flexible enough to target different market segments such
as consumer, automotive, mobile, or low cost.

A versatile cost saving test platform for RF ICs is proposed
in [9] that uses low cost custom tester-on-board circuitry and
membrane probes. The authors show that RF test cost can
be substantial, particularly with the upfront cost of automatic
test equipment (ATE) and sensitive probe cards. Using a
tester-on-board design, upfront cost saving was achieved and
production test cost was reduced by multi-site testing of 4 dies
simultaneously.

Other works include statistical outlier analysis used in [10]
to detect burn-in fails based on parametric wafer probe data,
where essential tests are selected by correlating to known
burn-in failures. In [11], parametric analog and RF testsets
are optimized based on a defect density fault model where
open, short, and pinhole faults were simulated for analysis.
Authors in [12] used several machine learning techniques to
detect failing devices based on a subset of mostly functional
and some parametric tests to reduce cost by removing non-
essential analog measurements.

III. AUTOMATIC TESTSET MINIMIZATION

Recent advances in machine learning, data mining, and
feature selection algorithms have enabled the creation of
new test selection strategies powered by large volumes of
production test measurements. Multivariate parametric testset
optimization was introduced in [8], allowing individual tests to
be ranked by their effectiveness when discriminating between
passing and failing dies in a high dimensional test space.

This paper proposes a new recursive test elimination strategy
called automatic testset minimization (ATM), where multiple
successions of testset optimization are applied to find the
best subset of tests for low cost multivariate wafer probe
screening. We use the ν-SVC support vector machine (SVM)
algorithm described in [13] and [14], implemented with a
modified version of the open source LibSVM software package
developed by [15].
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Fig. 2. Test Correlation Matrix

A. Usage Considerations

To successfully apply testset optimization algorithms, sev-
eral issues must be considered including the type of available
test data, extent of measurement correlation, magnitude of
process variability, and distribution of failures. Asking these
questions helps test engineers decide whether multivariate test-
set optimization is applicable given their specific product and
available test data. In this work, continue-on-fail parametric
wafer probe data from a 65nm RF/A device was used. The
key advantage of continue-on-fail parametric tests is that a
complete table of real valued measurements can be constructed
to perform testset optimization.

Given a large volume of parametric test data, a good indica-
tor of the ability to leverage multivariate methods and reduce
test cost is the existence of correlation between some test mea-
surements. Computing the pairwise correlation between test
measurements can be performed quickly on a representative
subsample of available test data. Figure 2 shows a correlation
matrix of 765 parametric tests from tens of thousands of dies
subsampled across many production lots. Red areas indicate
large positive correlation, blue areas indicate large negative
correlation, and cyan areas indicate zero correlation. This
figure shows that most tests with index below 100 are very
inter-correlated, these are voltage measurements. In addition,
other tests are correlated across a wider range of measurements
such as those with index 200 to 450, these are mostly Idd mea-
surements. With the existence of some correlation between test
measurements it is reasonable to pursue testset optimization.

Assuming testset optimization is justified by the existence
of some correlated tests, one still has to ensure that multi-
variate test methods can discriminate between passing and
failing dies based on a subset of tests. A common way to
inspect the dataset to ensure there is enough separability
between passing and failing dies is through visualization by
principle component analysis (PCA) [16]. In PCA, a linear
combination of passing test data is performed such that each
resulting principle component direction is uncorrelated, then

Fig. 3. Top 3 Principle Components

Fig. 4. Variance of Principle Components

the transform is applied to both passing and failing dies.
Figure 3 shows a 3D plot of passing and failing dies in the
top three principle component directions explaining 31% of
nominal device variance. The red stars are failing and the
blue dots are passing dies. A tight clustering of passing dies
is observed while failing dies spread out behaving as outliers.
This perspective shows that a multivariate test method should
be able to distinguish between passing and failing dies.

A useful consequence of PCA analysis, is that each resulting
principle component is associated with a variance measure-
ment which allows plotting the cumulative variance captured
by all components. Figure 4 shows the cumulative variance
plot for the 765 principle components computed by PCA.
The figure shows that nominal die variance can be explained
by around 400 principle components, roughly half the total
components present in the dataset. This is an indication that
multivariate testing may be able to accurately describe most
passing dies using a subset of test dimensions, offering more
justification for pursuing testset optimization and multivariate
model-based screening.

Paper 6.2 INTERNATIONAL TEST CONFERENCE 3



Fig. 5. Simple Multivariate Testset Optimization [8]

B. Multivariate Testset Optimization

Parametric testset optimization was introduced in [8]. Op-
timization is performed using a binary SVM classifier that
separates passing and failing dies based on labeled examples.
A training example is a vector-label pair (�si, li), of normalized
parametric wafer probe measurements taken for each die,
where �si = (t1, t2, ..., tn) are n parametric test measurements
t1 − tn, and li is a pass/fail classification label set by wafer
probe binning.

To find an optimal parametric testset, the ν-SVC soft margin
classifier is used to separate passing and failing dies with
maximum margin in a n dimensional wafer probe test space.
In this work, the test space was quite large, containing 765
different test measurements for each die, resulting in many
possible separating hyperplanes. Optimization is used to find
the best linear hyperplane that separates passing and failing
dies with maximum margin using the following quadratic
programming formulation introduced in [14].

Maximize − 1

2

m∑
i,j=1

αiαj liljK(�si, �sj)

Subject to 0 ≤ αi ≤ 1

m
,

m∑
i=1

αili = 0,

m∑
i=1

αi ≥ ν,

where αi,j are Lagrange multipliers, �si,j are example dies,
li,j ∈ {±1} are pass/fail training labels, ν is the fraction of
permitted training errors, K(�si, �sj) is the dot product kernel,
and m is the number of examples [14]. In general, passing
and failing dies may not be 100% linearly separable so ν is
used to control the fraction of misclassified samples allowed
when establishing a classification boundary.

Figure 5 shows a simple separating hyperplane obtained
after testset optimization in three test dimensions [8]. In this
case, the hyperplane completely separates passing and failing
dies. In general, a clear separation may not always be possible
depending on die labels and the number of test dimensions.
However, the goal of multivariate testset optimization is to find

Fig. 6. Top 30 Selected Tests By Testset Optimization

the best hyperplane that can separate the majority of passing
and failing dies regardless of class overlap [14]. It was shown
in [17], that the normal vector �w, which defines the linear
hyperplane orientation, encodes the importance of each test
when separating passing and failing dies.

An optimally weighted testset is determined by the compo-
nents of the optimal separating hyperplane’s normal vector �w
shown in Figure 5. As explained in [8], this vector describes
how far the hyperplane has tilted in each test dimension
to correctly classify failing devices. In Figure 5, tests T2
and T3 are weighted higher than test T1 since the weight
vector points in the direction of T2 and T3. This makes sense
because passing and failing dies can be separated by a linear
combination of tests T2 and T3, making T1 less relevant. Also,
the hyperplane is almost parallel to test direction T1 showing
that variation in test T1 will not impact the classification of
dies as passing or failing. Thus, finding an optimally weighted
testset amounts to finding the best linear combination of tests
that separates passing and failing dies in a high dimensional
test space.

The results of testset optimization are shown in Figure 6,
where the x-axis plots the 30 highest weighted tests and the
y-axis plots their normalized test importance. This figure was
generated by performing testset optimization across the first
80% of production wafer probe data. The dataset consisted of
tens of thousands of subsampled passing dies and all failing
dies from the bottom 10% of tail failures as shown in the
Pareto plot of Figure 1. In Figure 6, it is clear that the most
relevant tests are Idd and voltage measurements, confirming
the pairwise test correlation findings presented in Figure 2.

C. Recursive Test Elimination

This work proposes a new parametric testset optimization
method based on recursive test dropping, similar to the feature
elimination algorithm proposed in [18]. We call this method
automatic testset minimization (ATM). The algorithm applies
the above ν-SVC testset optimization procedure recursively,
at each step removing the worst ranked test, until a desired
subset of k tests is reached. By applying multiple successive
testset optimization steps we ensure that the best subset of k
tests is found, not just an initial ranking of all available tests.
We present an outline of ATM shown in Algorithm 1.

Paper 6.2 INTERNATIONAL TEST CONFERENCE 4



Algorithm 1 Automatic Testset Minimization (ATM)
Inputs:
X = [�t1, �t2, . . . , �tn]

T {Parametric Test Measurements}
�y = [l1, l2, . . . , li]

T {Pass/Fail Labels}
k = 100 {Size of Test Subset to Find}
Initialize:
s = [1, 2, . . . , n] {Index of Tests to Keep}
repeat
X = X(:, s) {Select Test Subset}
w = νSV C(X, �y) {Optimize Test Subset}
c = abs(w) {Compute Test Importance}
f = argmin(c) {Get Worst Ranked Test Index}
s = [s(1 : f − 1), s(f + 1 : length(s))]
{Drop Worst Ranked Test}

until |s| = k
Output: s {Best Test Subset}

D. Objective Functions

Various objective functions can also be leveraged when
using ATM to reduce total test cost, test time, probe card
costs, or even tester to tester variability. For example, if
individual test cost is known, this can be taken into account
when performing testset optimization so the algorithm prefers
to drop expensive tests. If tester to tester variability of each
test is known the ATM method can find an optimized subset of
tests that minimizes variability. Additionally, if the probe card
cost associated with each test is known, one can minimize the
number of tests requiring expensive probe card components.

In this case study, most analyzed tests were parametric Idd
and voltage measurements. These tests had a similar applica-
tion cost, therefor, dropping one test was not more important
than dropping another. With additional cost information, the
proposed ATM method can easily be modified to handle
testsets with very distinct test costs. A simple way to apply
a cost objective function is to scale all test measurements by
the inverse of their test cost. The ν-SVC algorithm interprets
larger valued measurements as more important and therefore
will naturally find test subsets where the number of tests and
total test cost are simultaneously minimized.

IV. TEST COST REDUCTION

We propose three test cost reduction strategies using mul-
tivariate model-based testing. Each strategy targets a specific
use case and therefore will have different cost reduction and
screening capabilities. For high quality low DPPM testing we
propose Test Dropping Validation, for aggressive cost cutting
and ultra low cost products we propose a Single Multivariate
Test Model, and for a balanced approach we propose a Multi-
Bin Multi-Model strategy. Each method strives to reduce the
number of tests used to screen the bottom 10% of tail failures
shown in Figure 1. The top 10% of tests are never considered
for dropping since their test effectiveness is high, however,
their parametric values may be used in subsequent screening
computations.

Algorithm 2 Test Dropping Validation (TDV)
Inputs:
X = [�t1, �t2, . . . , �tn]

T {Parametric Test Measurements}
L = [l1, l2, . . . , li]

T {Upper & Lower Safe Test Limits}
k = 10 {Size of Test Subset to Find}
Initialize:
M = [ ] {Set of Test Models to Keep}
d = [ ] {Index of Dropped Tests}
�y = [ ] {Pass/Fail Labels}
for all �t ∈ X do
[LSL,USL] = L(�t) {Get Test Limits}
{Check Test Limits}
if LSL < �t < USL then
�y(�t) = pass

else
�y(�t) = fail

end if
s = ATM(X, �y, k) {Find Optimal Test Subset}
m = νSV C(X(:, s), �y) {Generate Test Model}
{Check Test Validation Performance and Drop Tests}
if escapes(m) = 0 & overkills(m) < 0.25% then

d = [d,�t] {Remember Dropped Test}
M = [M,m] {Remember Test Model}
X(:,�t) = [ ] {Drop Predicted Test}
X(:, s) = [ ] {Drop Test Prediction Subset}

end if
end for
Output: d,M {Set of Dropped Tests & Test Models}

A. Test Dropping Validation

For high quality products, test cost reduction methods must
minimize cost but not impact DPPM levels. In many cases,
conservative screening is preferred allowing some overkill to
ensure that minimal defective parts reach the customer. For
such products, we propose test dropping validation (TDV), a
conservative test dropping approach that only removes tests
whose pass/fail outcome can be accurately predicted by a
subset of other tests present in the reduced testset.

Test dropping validation is outlined in Algorithm 2. It finds
correlated tests such that a combination of several measure-
ments can be used to predict the outcome of another test. To
find the best subset of tests we employ the proposed ATM
algorithm, and to perform multivariate test screening based
on this subset, we apply the ν-SVC algorithm introduced in
Section III. TDV results are presented in Figure 9.

Multivariate screening is accomplished by a predictive func-
tion f(�x) which is constructed based on parametric test data
(X, �y), where X is a subset of selected test measurements
and �y are pass/fail test labels. Such a model can be used to
predict the label of an unseen test sample �x where �x �∈ X. In
pass/fail screening, f(�x) is a decision function that predicts the
label of �x based on its parametric measurements. The ν-SVC
algorithm finds a multivariate test function of the form:
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Fig. 12. Sweep # Tests, Thousands of Passing Dies

see a monotonic decrease in the number of training overkills
and test escapes. This shows that it takes a minimum number
of tests for a given dataset to properly screen failures from
nominal dies. In Figure 12, we train models using thousands
of passing samples and observe that the number of training
escapes and overkills drops to zero at around 300 tests, which
would result in about 50% test cost reduction.

These findings show that it takes at least 300 tests to
properly distinguish between passing and failing dies and gives
an upper bound of 50% test cost reduction when training with
thousands of passing dies. We observe a minimum of 30 test
escapes and 169 overkills. This translates to 0.42% escapes,
however training with only thousands of nominal dies incurs a
steep 1.69% overkill. In Figure 8, we already showed the need
to train with at least 40k passing dies to generate a converged
model and minimize overkill. Therefore, we present tradeoff
results when training with more than 40k passing dies while
sweeping the number of tests from 10 to 700.

In Figure 13, when training with tens of thousands of
passing dies, a different tradeoff curve appears. In this case, we
need more tests to achieve zero training escapes and overkills.
This result shows that to train a general model with minimal
overkill the lower bound on the capacity for cost savings drops
to roughly 530 tests or about 30%. There is a minimum of 51
test escapes and 22 overkills, roughly translating to 0.81%
escapes and 0.22% overkills. Observe that there is a crossover
point at around 400 tests where the number of overkills drops
below the number of test escapes. This is in contrast to Figure
12, where there are more escapes than overkills.

From Figures 12 and 13, we can conclude that training
with thousands of samples generates an over-fit model which
does not fully capture the space of passing dies, leading to
many overkills but fewer test escapes. On the other hand,
training with tens of thousands of passing dies ensures a
converged generalized model with minimal overkill and some
more escapes. Given these tradeoff curves, test engineers have
the ability to choose a target cost cutting objective to best meet
their test quality requirements.

To further reduce test escapes, we suggest using a multi-
model multi-bin test strategy targeting specific bins that are
difficult to screen with a single multivariate test model. To

Fig. 13. Sweep # Tests, Tens of Thousands of Passing Dies

Fig. 14. Stacked Tail Fail Pareto of Validation Set

find bins that are problematic, we plot a stacked Pareto of
tail failures from the validation set in Figure 14. The x-axis
shows individual bin numbers, the left axis shows the failing
die count, and the right axis shows the percent validation tail
fails. Blue bars indicate the number of captured fails and pink
bars indicate the number of test escapes for each failing bin.

In Figure 14, bins 1, 8, and 15 clearly stand out as
being problematic. These three bins alone are responsible
for 59% of all validation test escapes incurred by the single
multivariate test model. By predicting these bins individually,
we can reduce the test escape rate with minimal additional
overkill. Table I shows the performance of multi-bin multi-
model screening. For all three problematic bins, escapes were
reduced by finding a different subset of tests and generating an
additional multivariate test model that best captures failures in
that bin. A total of 0.584% additional failures were screened
at cost of 0.03% additional overkill.

Bin Additional % Reduced % Additional
Num. Screened Fails Escapes Overkills

1 25 0.395 0.01
8 7 0.111 0.01
15 5 0.078 0.01

Total 37 0.584 0.03

Table I: Multi-Bin Multi-Model Screening Performance
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D. Discussion

The test cost reduction methods presented in this work show
the tradeoff between the number of dropped tests and the
screening capability of multivariate test models generated by
analyzing test data. It should be noted that the tradeoff figures
presented are based only on the data we have analyzed and
may not reflect absolute cost savings potential. Restrictions in
test ordering, derived measurements, and other proprietary test
requirements may not permit the elimination of all indicated
tests from the actual test program.

The goal of this case study was to show the potential for
using multivariate test methods to achieve significant cost
reduction with minimal impact on test escapes and overkills.
Test cost reduction is possible because we consider the test
problem from a multivariate perspective, allowing multiple
measured parameters to be evaluated simultaneously when
making a pass/fail test decision. This test perspective, coupled
with the automatic testset minimization algorithm, enables
parametric test cost reduction in RF/A wafer probe screening.

While the proposed method worked very well on parametric
wafer probe test data from an RF/A device, it may not be
directly applicable to other products or industry segments. For
example, in SoC testing various different on-chip blocks are
probed that may not even be physically connected, resulting
in many orthogonal test measurements where no multivari-
ate generalization can be achieved. Additionally, in products
without the 90:10 Pareto of test effectiveness, there may not
be significant cost reduction when screening tail failures using
a subset of tests.

Table II shows the overall cost reduction performance for
the three methods surveyed in this case study. Test dropping
validation was able to achieve 5.6% cost savings with zero test
escapes and 0.22% overkill. The single model test method
achieved 30% cost savings with 0.993% test escapes, while
the multi-bin multi-model method reduced escapes by over
half to 0.409%. It is important to note that 30% cost saving
does not imply 30% redundancy in the original testset from
a univariate test perspective. Every test still individually mea-
sures something different. The 30% cost saving is achieved
by serening in a multidimensional test space where some tests
become unnecessary. Other data sets will need to be analyzed
to determine how performance changes with different device
types and test flows.

Method % Cost Savings % Escapes % Overkill
TDV 5.6 0.000 0.221

Single Model 30 0.993 0.281
Multi Model 30 0.409 0.284

Table II: Comparison of Cost Reduction Methods

VII. CONCLUSION

This work presented a case study of parametric wafer probe
test cost reduction for an RF/A device. We proposed a new
automatic testset minimization (ATM) algorithm and three
multivariate test methods for reducing cost by test dropping.

Analyzing over 1.5 million dies, we showed that 5.6% test cost
reduction can be achieved with 0% test escapes and 0.221%
overkill. More aggressive cost cutting strategies reduced test
cost by up to 30% if 0.409% test escapes and 0.284% overkills
can be tolerated in wafer probe. Cost saving was achieved by
leveraging optimal subsets of parametric test measurements
and multivariate test models to effectively screen tail failures
requiring 90% test effort to capture. The case study found
that large volumes of wafer probe test data can be analyzed to
extract relevant test subsets and perform multivariate screening
to significantly reduce parametric wafer probe test cost.
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