
Data Learning Based Diagnosis∗

Li-C. Wang
University of California, Santa Barbara

Abstract— Traditional diagnosis of defects is based on an as-
sumed fault model. A failing chip is diagnosed to find the subset
of faults that can best explain the failure. This paper illustrates
a link between this traditional perspective of diagnosis and a new
perspective where diagnosis is seen as a form of data learning. We
explain that both defect diagnosis and data learning are solving
so-called ill-posed problems and the technique for solving such a
problem is called regularization. We illustrate a diagnosis frame-
work that employs various data learning techniques to implement
two diagnosis approaches: feature ranking and rule extraction.
This diagnosis framework is designed to uncover design-related
issues that cause systematic uncertainties or any unexpected be-
havior in silicon. We review the work that has been accomplished
for implementing this framework and further discuss issues with
its practical application.

I. DESIGN FOR REALITY

As manufacturing technologies continue to scale, diverse
trends can be observed in today’s IC design industry: (1) For
a high-volume high-performance design company, the grow-
ing concern has been on the issue of low manufacturing yield.
Such a company collects millions of failing parts each quar-
ter and urgently needs a framework that can efficiently analyze
vast amount of silicon test data. (2) For a high-performance
microprocessor company, there has been increasing burden on
the post-silicon debug and diagnosis. Such a company tra-
ditionally relies on multiple silicon steppings [1] for perfor-
mance yield optimization after the first tape-out. They demand
a new framework that can complement traditional debug and
diagnosis and improve the effectiveness of each silicon step-
ping. (3) For a typical ASIC design house where tens of de-
signs are produced each year, the issue of low yield is reflected
in the increase of design margins. While the advancement into
the next technology node can bring benefits on power and die
size, managing design margins to achieve high enough yield
has become very challenging. The framework required is for
avoiding over-design, which in turn translates into better chip
performance, lower design cost, and earlier time-to-market.

Low yield can be seen as a result of the increased vari-
ability (systematic variations) and uncertainty (random varia-
tions) from manufacturing process and design-related sources
[2, 3, 4, 5, 6, 7]. Variability and uncertainties degrade pre-
dictive effectiveness of models and simulation tools on actual

∗This work is supported in part by SRC 2007-TJ-1585 and by National
Science Foundation NSF project CCF-0915259

silicon behavior. The three trends above, although presented
differently, can all be seen as results of reduced predictability.
This motivates the development of new tools and methodolo-
gies that can help achieve design for realty.

An intuitive approach to achieve design for realty is to im-
prove predictability of key models and/or simulation design
tools used in today’s design flows. Figure 1 illustrates the
challenge of adopting this approach in practice. When low
yield is observed, there can be an enormous number of poten-
tial reasons from different sources, or combinations of sources
at different stages of a design process [8]. For a particular de-
sign, the most relevant reasons can be quite diverse and highly
depend on the design and/or design methodology. Usually, a
point solution is developed by improving a particular model
(for example, cell model [9]) or a particular design tool (for
example, SSTA [10, 11]). However, without knowing what the
most important contributors to low yield are, it is difficult for
a company to prioritize their design resources and adopt the
most effective point solutions for yield optimization.

Process
characteristics

Observed
low timing yieldDevice/interconnect

characterization
(test chip methodology)

RC model & Timing

Noise
analysis

Design & optimization

Power
grid

Tester &
Test delivery

DFM/OPC

Cell
Library

SPICE
model

RC model &
Delay

calculation

Timing
model &
analysis Clock

design

grid
DFT/

Test patterns

DFM/OPC

Fig. 1. Too many factors potentially affect yield

To prioritize design resources, one desires to know the few
most relevant reasons contributing low yield. This information
typically comes from the post-silicon debug/diagnosis/yield
learning stage. Traditional debug/diagnosis techniques, how-
ever, are optimized for analyzing manufacturing defects on in-
dividual failing parts [12, 13]. The results are mostly fed back
to the process. When applying these techniques to find design-
related issues, their effectiveness to analyze vast amount of
failing data and to search in an enormous hypothesis space
consisting of factors from multiple design stages can be lim-
ited.

Given a large database (design and test data), searching for
hypotheses in an enormous space to best explain the data, is
commonly formulated as a data learning problem. This moti-
vates us to approach the diagnosis problem from a data learn-
ing perspective.

978-1-4244-5767-0/10/$26.00 2010 IEEE

3D-1

247

Root causing

Most common
failure signatures

Logic level Inspection &

Hypotheses

Logic level
diagnosis

Test data
Design

fixes

validation

Data
learning Rules

A transduction process

Fig. 2. Data learning to achieve transduction diagnosis

Figure 2 illustrates a comparison between the traditional di-
agnosis approach and the proposed data learning based diag-
nosis. A traditional approach consists of two main steps in
the diagnosis process: induction and deduction. From a mass
amount of test data, on every failing chip logic diagnosis is first
applied to narrow down to the circuit elements (gates and/or
nets) that may potentially cause the failure. This information
is aggregated to identify the most common failure signatures.
For example, a particular net is the suspect for failing a large
number of chips. The common signatures and selected rep-
resentative failing chips are sent for root cause analysis, such
as physical debug to identify the root causes. Once these root
causes (hypotheses) are found, they are sent for manual inspec-
tion and/or simulation for validation. Once they are confirmed,
design fixes are generated and applied.

From test data to root cause analysis is an induction process
where the inference is frequency based, i.e. if the same thing
occurs many times, it is more important and likely to be the
truth. From root causes to design fixes is a deduction process
where design fixes are deduced from the premises embodied in
the hypotheses. The bottleneck in such a diagnosis approach
is getting to the root causes. It is well known that root causing
can be tedious and expensive. As a result, only the most im-
portant (and most frequent) information in the test data would
eventually translate into design fixes. Other information is lost
in the diagnosis process.

If our ultimate goal is to find fixes, it may be desirable to
find fixes directly from the data without going through the root
causing step (and hence avoiding the most expensive step in the
induction-deduction diagnosis paradigm). We call such an ap-
proach transduction diagnosis [14] (The word ”transduction”
was used in [14] to characterize the modern non-parametric
learning paradigm similar to the concept illustrated in Fig-
ure 2). The idea of transduction diagnosis is ”direct inference”
by learning these fixes directly from the data without know-
ing the physical reasons behind the fixes. In other words, such
fixes are entirely ”data driven.” By skipping the root causing
step, transduction diagnosis can be more effectively applied in
practice and demands less resources.

The rest of the paper is divided into four sections. Sec-
tion II draws the link between traditional logic diagnosis and
data learning through the notion of the ill-posed problem which
is closely related to the concept of diagnosis resolution well
studied in traditional logic diagnosis. Section III explains how

data learning can be employed to implement a diagnosis frame-
work consisting of two diagnosis approaches: feature ranking
and rule extraction that can be achieved with various learning
techniques. Section IV discusses our experience with various
learning algorithms in applying the diagnosis framework. Sec-
tion V describes a few scenarios where the proposed diagnosis
framework has been applied and discusses practical consider-
ations encountered. Finally, section VI concludes.

II. DIAGNOSIS AND LEARNING

In diagnosis, we are given with two set of data, one dataset P
describing predicted behavior and the other dataset M describ-
ing measured behavior where P �= M. Typically, the dataset P
is obtained by simulating a pattern set T . The dataset M is ob-
tained by applying T on the chip(s) to be diagnosed. The job
is to find the best explanation for why P �= M. In logic diag-
nosis, P and M can each be seen as an n×m-bit vector of 0/1
values, where n denote the number of patterns and m denote
the number of scan flip-flops.

To explain the mismatch, a traditional approach starts with a
fault model F consisting of n possible faults { f1, . . . , fn}. Let
F = 2F −φ be the set of all subsets of F, excluding the empty
set φ. Each subset f ∈ F is a possible explanation for the
outcome. Hence, there can be in total 2n −1 different explana-
tions.

Let A denote the simulation of the design. We use A ◦ f to
denote the resulting dataset (vector) of fault simulation based
on the subset f . Hence, A ◦ φ = P, denotes the result of good
design simulation. Then, we can write the diagnosis problem
as finding the explanation f to ”best” solve the following equa-
tion (or equivalently, we can express it as A◦ f = P−M if we
view A as the simulation to compute the difference between the
good design and the faulty design):

A◦ f = M, for f ∈ F (1)

To determine which explanation is the best, we need a way
to evaluate the fitness of an explanation. We can define a loss
(or error) function. For example, a loss function can be written
as the following:

R(f) =‖ A◦ f −M ‖2 (2)

In logic diagnosis, A ◦ f and M are bit vectors. R(f) there-
fore measures the square distance between the explained vector
A◦ f and the measured vector M. When each bit has only two
possible values, 0 and 1, R(f) essentially counts the number
of bits that cannot be explained by f , i.e. with fault f , can-
not explain the difference between P and M. With such a loss
function, the best f can be the one that minimizes R(f).

A. Diagnosis resolution

Once a loss function is defined, finding f to minimize R(f)
is an intuitive strategy. Such a f is typically called a “best-fit”
answer to the dataset. However, there is a fundamental issue
with this strategy: The best-fit answer to a dataset may not

3D-1

248

always be the correct answer. This is because the dataset may
not be “complete.”

In traditional logic diagnosis, the completeness of a dataset
is captured in the notion of diagnosis resolution [15]. With a
logic fault model such as a single stuck-at fault model, diagno-
sis resolution of a dataset (or of a test pattern set) can be well
defined [15]. In that sense, one can decide if a given dataset
allows diagnosis to pin-point to a particular fault. If the di-
agnosis resolution is not high enough, one may only be able
to diagnose to a subset of faults and among these faults, no
information is available to further distinguish them.

The concept of diagnosis resolution is intuitive in logic fault
diagnosis. First, the fault model is discrete and the set of all
possible answers is enumerable. Under the single fault as-
sumption, suppose we have n faults { f1, . . . , fn} and m test
patterns {t1, . . . ,tm}. One can build a fault dictionary as that
shown in Figure 3. Each entry si j corresponds to the outcome
(or signature) of fault simulation using test pattern t j assuming
that fi occurs. Note that two signatures can be the same even
though the test patterns and/or faults are different.

t1 t2 tm
f1
f2

…
s11 s12 s1n

s21 s22 s2n

…
…

m test patterns

ts

Two different entries may have same signature values

For highest diagnosis
resolution, signatures off2

fn

…

21 22 2n

sn1 sn2 snm

…… … …
…

n
fa

ul
t

Outcome by apply t1 assuming fn occurs

ANY two rows should differ
with respect to at least
one test patterns

Fig. 3. Illustration of a fault dictionary

The diagnosis resolution can be understood using such a
fault dictionary. For every pair of faults fi, f j , if the signa-
tures across the two rows, row i and row j are different at least
with respect to one test pattern, all faults (potential answers)
are distinguishable and hence, the the resolution is the highest.

On a given failing silicon chip, the test patterns result in
outcomes {o1, . . . ,om}. Suppose the underlying defect is really
a single stuck-at fault. Then, each ok matches to one or more
entries in the column below tk, which corresponds to a subset
of faults. The intersection of all these subsets becomes the
answer. If the resolution allows all faults to be distinguishable,
then the answer contains only one fault. Otherwise, the answer
may contain two or more faults.

If we remove the single fault assumption and employ the
same fault model, then we need to consider all possible fault
combinations to be the potential answers. Essentially, this ex-
pands the fault dictionary from n rows to 2n−1 rows. Suppose
the computational cost is not an issue, with such an expanded
dictionary, diagnosis resolution can still be defined.

The notion of diagnosis resolution become not so clear when
the fault model is not enumerable or contains infinite number
of faults. For example, in timing defect diagnosis (or more
specifically in statistical timing defect diagnosis), it becomes

challenging to apply the diagnosis resolution concept [16].
This is because delay is a continuous value. One may bound
this value but it becomes difficult to diagnose to the exact delay
value. Conceptually, faults in such a fault model are not enu-
merable. In this case, one can think that the fault dictionary
has infinite number of rows.

The problem becomes even more challenging if we try to
diagnose not defects but any potential issues that may impact
timing, for example modeling errors, layout issues, issues as-
sociated with a timing sign-off flow, and so on. In such a sce-
nario, one may not even have a clear idea of how to define a
structure of the fault model to begin with.

B. Diagnosis is an ill-posed problem
The diagnosis resolution defined in traditional logic diagno-

sis captures a notion of completeness in a given dataset, i.e.
whether the dataset has enough information to pin-point an ex-
act answer. With a logic fault model and single fault assump-
tion, it is possible to achieve a complete dataset because the
number of possible answers is limited. In general (and in prac-
tice), however, the dataset is incomplete.

With an incomplete dataset, the problem of finding an an-
swer f ∈ F to fit the equation A ◦ f = M becomes ill-posed.
This means that the best-fit answer f , for example by minimiz-
ing the R(f) in equation (2) can change if M is replace with a
new dataset M′. In other words, there is an inherent instability
in the problem solving process, i.e. the best answer can heavily
depend on the dataset.

Ill-posed problems arise when one tries to uncover unknown
causes from known consequences. The mathematical notion
of ill-posed problem was first formulated in the early 1900s by
Hadamard when solving the operator equation A f = F , f ∈ F
where f and F are continuous functions and A is a mapping
(operator) from functions to functions [14].

C. Solving an ill-posed problem - Regularization
The main issue of solving an ill-posed problem is that we

have only limited information in the data. Hence, in perform-
ing inference, we should not over-fit the data. This is to avoid
having an answer that overly depends on the data. This means
that during the inference process, somehow we need to gen-
eralize the information in the dataset [14]. One way to avoid
over-fitting is to relax from finding the “best” answer fitting
the dataset, i.e. the one that minimizes the loss function R(f).
This relaxation strategy is called regularization that was pro-
posed in 1960s for solving ill-posed problems. With regular-
ization, instead of minimizing a loss function, one minimizes
a regularized function R∗(f):

R∗(f) = R(f)+ γΩ(f) (3)

where γ is a constant representing the tradeoff between min-
imizing the loss R(f) and minimizing the regularization func-
tion Ω(f).

A regularization function is data independent. It character-
izes some property regarding the solution f itself. For exam-
ple, one common way to define Ω() is to measure the complex-
ity of f . With such a regularization function, one is basically

3D-1

249

saying that a simpler answer will be preferred over a complex
answer. For example, if R(fa) = R(fb) and fa is more complex
than fb, then fb is a better answer even though both have the
same loss value.

Once the complexity measure Ω() is chosen, there can be
two strategies to minimize R∗(f) [14]:

Fixing R(f) ≈ 0, minimizing Ω(f) One can fix a target for
R(f), say R(f) = 0 and then try to minimize Ω(f). In
diagnosis, this translates to finding the simplest explana-
tion to almost perfectly fit the dataset, i.e. able to explain
almost every bit difference in the dataset P−M (finding
the lowest-complexity f such that A◦ f ≈ M). For exam-
ple, if one can find an answer with one fault to perfectly
explain the dataset, even though there is another answer
with two faults that can also perfectly explain the dataset,
the two-fault answer is not preferred (assuming one takes
the view that a two-fault answer is ”more complex” than
an one-fault answer).

Fixing Ω(f), minimizing R(f) One can fix the complexity of
the answer and then try to minimize R(f), i.e. finding the
best-fit answer from all possible answers within a given
complexity level. For example, in diagnosis one take the
assumption of single fault occurrence based on a fault
model. This assumption corresponds to limiting the com-
plexity of all possible answers first. In this case, Ω(f)
is a constant because every answer contains a single fault
(assuming that complexity is measured by the number of
faults). Then, the diagnosis problem becomes finding the
best single fault that minimizes R(f).

With a fault model, the second strategy is more intuitive.
However, by limiting the complexity of all potential answers,
one may not find an answer that explains the dataset well. In
other words, with a pre-defined fault model, we often do not
find a f to achieve R(f) ≈ 0. In practice, the cause(s) behind
an observed dataset M can be much more complex than what
a fault model is capable of explaining. Hence, by fixing the
complexity measure Ω(f), although it avoids the over-fitting
issue, one may not find an answer f that is satisfactory.

In diagnosing a large number of failing chips, the second
strategy may result in significant information loss. When many
chips are not explainable by the strategy, people tend to discard
them and focus on those that can be explained.

The first strategy, although not intuitive, is more general for
diagnosis without the limitation of a fault model. Because of
that, it is more suitable for application in situations where a
large number of chips are used in diagnosing timing modeling
errors, tool issues, layout issues, and so on. In this work, we
therefore follow the first strategy. To implement such a strat-
egy, we take the perspective that diagnosis can be seen as a
form of data learning.

D. Link to data learning

To draw the link between diagnosis and learning, we take a
typical regression problem formulation as an example.

In regression, we are given a dataset (X,�y) as shown below
where each yi is the measured result of an unknown function
F(�xi) corrupted by some random noise, i.e. yi = F(�xi) + ξi

where ξi is a random variable that models the noise.

n

n

y
y

y
xxx
xxx

x
x

...............
...
...

...
2

1

22221

11211

2

1

X

mmnmmm yxxxx ...21

Fig. 4. Illustration of a regression dataset

Regression estimates a regression function f (�x) = p(y|�x)
which is a conditional probability function such that∫

p(y|�x)dy = F(�x), i.e. the expected value of y given an �x
is F(�x). By letting A be the integral opeation “

∫
”, we can

re-write the problem as finding f (�x) to solve the equation
A f (�x) = F(�x), or simply A f = F that is in the same form as
shown in equation (1) before. Again, the problem is ill-posed.
In particular, the dataset (X,�y) is only a snap-shot of the be-
havior given by F .

Let F = { f1, f2, . . .} be the set (infinite sequence) of regres-
sion functions that we can choose from (In the context of diag-
nosis, this is to say that a model contains an infinite sequence
of potential causes). The reason of having infinite number of
functions, is that we are working in a continuous domain. For
a given f ∈ F , a typical loss function can be defined as:

R(f) =
m

∑
i=1

||A f (�xi)− yi||2 (4)

Similarly, the regularized function R∗(f) now becomes:

R∗(f) = R(f)+ γΩ(f) (5)

where Ω(f) measures the complexity of function f . Vapnik
in his celebrated statistical learning theory work [14] explains
how the complexity of a function can be measured. Once
such a measure Ω() is defined, one can search for the lowest-
complexity function that fit the data, i.e. minimizing Ω(f) con-
strained by R(f) ≈ 0 (the first strategy discussed above).

To map the regression problem to the diagnosis prob-
lem, consider that �y is a result derived from the measure-
ment data. Each yi corresponds to a silicon measurement.
�xi = (xi1, . . . ,xin) consists of values on a set of n “factors”
(d1, . . . ,dn) that can potentially impact the measurement. Each
di is called a design feature. For example, each design feature
may correspond to some design property. Then, the regression
problem becomes trying to find the best function f that maps a
set of design properties to the measurement result.

Suppose a f can be found such that R(f) ≈ 0. f can be
seen as an explanation for the result �y in terms of the design
properties. However, such an explanation may not be useful
because it could be hard to look at the function and make some
practical sense out of it. Hence, additional information needs
to be extracted from f . One way to extract such information is

3D-1

250

to rank the features based on f . For example, one can decide
the top 3 design properties that impact the measurement result
the most. These top 3 properties (or features) become the result
of diagnosis which are output to the user. For example, this
approach was employed in the methodology proposed in [17].

III. DATA LEARNING IN DIAGNOSIS

Test
patterns

Design
database

Set of all
relevant
features

Measurement
data on a set

Diagnosis
question

Feature value
extraction and
value encoding

X

y

Data
learning

Result

patterns data on a set
of sample chips encoding

y

Fig. 5. Data learning based diagnosis flow

Figure 5 illustrates the data learning based diagnosis flow
discussed above. In this flow, design database and measure-
ment data can be obtained from existing design and test infras-
tructures. Depending on the application scenario, the design
database may consist of such as design netlist, timing model,
layout information stored as Lef/Def, timing constraints, RC
table, STA timing report, and so on. Measurement data may
consist of for example, measured delays for a set of paths
across a set of chips. There are four new components to enable
the diagnosis flow: extracting relevant features, feature value
encoding, diagnosis question encoding, and data learning.

A. Extraction of relevant features

Design databases are complex, containing all information
on a design and its design process. Given a set of measure-
ment data, not all design features are relevant. For example,
some cells are not used in the circuit to be analyzed. Extract-
ing relevant features is the first step to narrow down the search
space for the diagnosis. This step can be based on a manually-
defined feature scheme. For example, the work in [18] de-
fines features in terms of cells and wires. The work in [17]
gives a more comprehensive list of features dividing into five
categories: cell-based, interconnect-based, location-based, dy-
namic effects, and tool-related effects. Other features can be
defined. For example, one can define features to capture the
different characteristics between a data path and its clock path,
such as the difference between the number of low-vt cells used
on the two paths.

In the ideal situation, relevant features should be automati-
cally extracted from the database given the measurement data.
However, such a tool is still under development.

B. Feature value encoding

Given n features {d1, . . . ,dn}, for each measurement i, the
values of the features, xi1, . . . ,xin need to be computed. Each
measurement corresponds to a portion of a circuit with some
measurement condition. Hence, typically these features de-
scrib the characteristics of the circuit and the condition. De-
pending on the feature, the value can mean different things.

For example, a feature may describe the slew rate while an-
other may describe the load. Hence, their values need to be
treated differently. For example, the work in [17] discusses the
use of different kernel functions to interpret different types of
features in the learning.

C. Diagnosis question encoding

Given the measurement data, one needs to form a diagno-
sis question. This is straightforward if there are clearly two
classes of measurements, for example the class that contains
all measurements within the expected values and the class out
of the expected range. In other scenarios, more analysis needs
to be done to capture “abnormal behavior”.

For example, m measurements t1, . . . ,tm can correspond to
the measured delays on m paths. Suppose their predicted de-
lays are p1, . . . , pm, respectively. We can let yi = pi − ti for
1 ≤ i ≤ m. Then, the diagnosis question should ask why pre-
dicted delays are not the same as measured delays. While di-
agnosis for inaccurate prediction is intuitive, in practice it is
not the most interesting application.

A more interesting application can be letting yi = 1 if
pi − ti ≥ 0 and yi = 0 if pi − ti < 0. In this case, the data is
divided into an over-estimation class and an under-estimation
class where measurements fall into the over-estimation class
are considered as normal. Typically, one should see far more
measurements falling into the over-estimation class than the
under-estimation class. The diagnosis is then asking why
under-estimation occurs.

The two-class example may not always be applicable in
practice. For the two-class diagnosis question to make sense,
the predicted and measured delays have to be based on the
same environmental conditions (ex. temperature and voltage,
etc.). In practice, measured data may not correspond exactly to
any of the timing sign-off corners. In that case, the two-class
diagnosis question described above becomes less meaningful.

Pr
ed

ic
te

d
de

la
ys

Cluster 1

Cluster 2

Outliers 2,3

Measured delays

Outlier 1

Fig. 6. An example of measurement-prediction data plot

Figure 6 illustrates an example where measured delays are
plotted against predicted delays. In this plot, all measurements
under the 45◦ line are in the under-estimation class based on
the definition above. However, this mismatch may be due
to that timing analysis used to generate the predicted delays
was run at the nominal corner rather than a worst-case corner.
If running at a worst-case corner, many points in the under-
estimation class can be moved to the over-estimation class.

3D-1

251

Given such a plot, one interesting question to ask is not why
under-estimation occurs, but for example, why there are two
clusters of data. Note that this trend is independent of the no-
tions of under-estimation or over-estimation (the 45◦ line has
no meaning here). Another interesting question can be asked
is regarding why the three outliers occur. For example, out-
lier 1 represents the most under-estimation case, relative to all
other measurements. One can ask the question what causes the
outlier to happen. This can still be seen as a two-class problem
where one class contains all points but the outlier and the other
class contains only the outlier.

The example in Figure 6 shows that in general, one can try to
diagnose the reason behind an unexpected trend (such as two
clusters) or the reason behind extremely unexpected behavior
(such as outliers). This is possible even when the environmen-
tal condition in measuring the data is slightly different from
the sign-off condition in the timing analysis flow and hence,
extends the applicability of the diagnosis flow.

D. Two types of data learning for diagnosis purpose

After the above three steps, data from design database to-
gether with test measurement data are formatted into a dataset
(X,�y) as shown in Figure 5 above. Various learning techniques
may be applicable at this point. Typically, one can perform two
types of learning on the dataset, depending on the characteris-
tic of the dataset and the application scenario.

Feature ranking As mentioned before, feature ranking is
used to identify the top features that are most relevant
to the diagnosis question. In feature ranking, the learn-
ing problem is either formulated as a regression problem
[17] or a classification problem [18]. If it is a classifi-
cation problem, there should be enough samples in each
class for meaningful learning to take place. If one class
contains very few samples, for example only one sample,
then the rule extraction described below is more appropri-
ate.

Rule extraction Sometimes, knowing the top features may
not be enough. One desires to diagnose to a more explicit
answer. In other occasions, the size of measurements in
the two classes of data differ significantly, producing a
very unbalanced dataset. In such application scenarios,
rule extraction can be applied.

The main body of a rule is a combination of features. For
example, let d1 be a feature denoting the number of a low-
vt AND cell and d2 be a feature denoting the delay on the
clock path calculated by the timing analysis. A rule may
look like ”If d1 ≥ 2 and d2 ≥ 25ps then the path delay
is under-estimated with a probability of 98%”. Given a
dataset, multiple rules are usually extracted because a sin-
gle rule may not be able to explain all behavior reflected in
the dataset, analogous to traditional logic diagnosis using
a multi-fault model when no single fault can fully explain
the data.

IV. EXPERIENCE WITH LEARNING ALGORITHMS

In the field of machine learning, many types of algorithms
have been proposed and studied. Generally speaking, learning
algorithms can be divided into two categories: supervised and
unsupervised. In supervised learning, dataset is given as (X,�y).
In unsupervised learning, only X is given (without�y). For ex-
amples, regression and classification are supervised. Cluster-
ing and association rule mining are unsupervised.

Popular algorithms for supervised learning include Neural
Network and Random Forests [19]. Support Vector Machine
(SVM) [20], and more generally kernel-based learning [21]
emerged to be popular learning paradigms in the past decade
and have been applied widely in many fields. Gaussian Pro-
cess (GP) [22], which can be thought as a Bayesian version of
the SVM approach, gained popularity in recent years as it not
only can learn more effectively but also can provide confidence
estimate of its learning.

X y

Select important
features

t i
m

po
rt

an
t

am
pl

es

y

Se
le

ct sa

Fig. 7. Supervised learning can be carried out in two directions

Figure 7 illustrates the two directions that a supervised
learning algorithm may carry out. In the horizontal direction,
a supervised learning algorithm may weight the importance of
features. One can look at this as finding the minimum set of
features for building a model. Typically, by picking up the
most important features that influence�y, a better model can be
learned. For example, Random Forests and Gaussian Process
algorithms both are capable of weighting features.

In the vertical direction, samples are weighted based on their
importance. For example, in SVM some samples are weighted
zero, meaning that they contain redundant information for
building the model. These samples become non-support vec-
tors. When analyzing a large number of chips, support vector
analysis can be applied to select the most important chips for
subsequent analysis.

In general, a supervised learning algorithm carry out opti-
mization in either direction or both. For example, SVM is
designed to optimize in the sample direction and usually can
handle a large number of samples (say hundreds of thousands
or millions) with a large number of features (say thousands or
tens of thousands). GP typically is multiple times slower than
SVM because it carries out optimization in both directions.

Consider a learning algorithm that takes a dataset as shown
in Figure 7 and tries to build an almost perfect model for ex-
plaining the dataset, by finding a minimal set of features and a
minimal set of samples. This is the strategy discussed in Sec-
tion II- C before as ”fixing R(f)≈ 0, minimizing Ω(f)” where
the complexity measure Ω() is measured in terms of number

3D-1

252

of features and number of samples. Hence, we see that mod-
ern learning algorithms such as SVM and GP both follow this
strategy.

A learning algorithm such as SVM and GP build a model
to map X to �y. Typically, this model is used for prediction
purpose, not for interpretation purpose. To interpret the result
of learning, one can either rank features based on the model
or extract some rules directly from the data. Moreover, se-
lecting important features and samples can be employed as a
preprocessing step to reduce the size of dataset and facilitate
the subsequent analysis step such as rule extraction.

In machine learning, two types of rule extraction paradigms
exist. When multiple classes are present in the data, rule induc-
tion is applied. Some best known rule induction algorithms are
the CN2 [23] and its extension the CN4 algorithm [24]. For ex-
ample, in a recent work [25] the authors propose using rule in-
duction for analyzing unexpected silicon behavior divided into
classes. When data are given without classification (without�y),
association rule mining is applied. To handle continuous fea-
ture values, the quantitative association rule mining approach
[26] is among the first methods proposed. Recently, a special
rule extraction technique was proposed [27] to handle the cases
where there are two classes of samples, and one class has only
one sample and the other class contains the rest of the samples.

In most of the diagnosis scenarios addressed by the proposed
work, data are divided into classes. Hence, the CN2/CN4 al-
gorithms or special rule extraction technique [27] can be used.
Association rule mining may be applied when only one type
of data is available, for example only failing data are available.
Note that the quality of rules extracted based on two classes of
data is usually higher than those with one class. In other words,
it is easier to diagnose by comparing information in two classes
of data than by using only one class of data.

Unsupervised learning is applied when analysis is carried
out on one class of data. For example, the one-class SVM
algorithm [20] has shown great promise in outlier analysis
[28]. In diagnosis, outlier analysis might be applied as a pre-
processing step to divide samples into classes (outliers and the
rest of the population) if the data is given without pre-labeled
classes. One-class SVM has been applied in another context
that is closely related to diagnosis — to implement similarity
search [29]. Suppose that the objective of diagnosis is to find
fixes. Suppose we are given a number of speed paths as bad
examples. The goal is to find other paths to improve based on
what we learn from the speed paths. This can be formulated
as a similarity search problem. The work in [29] applies one-
class SVM to build a model for the speed paths. Then, this
model is used to scan all other paths to find similar paths for
improvement. Recently, a more sophisticated similarity search
approach was proposed and applied to the speed path analysis
problem using industrial data [30].

V. APPLICATION SCENARIOS AND CONSIDERATIONS

The proposed diagnosis framework has been applied in two
scenarios in practice. The first scenario is speed path analysis
and the second scenario is calibration of a timing analysis flow.

In high performance design, speed paths are paths that limit
the performance of a chip. Speed paths are typically identified
using silicon samples. After these paths are found, one desires
to understand what make these paths special. In such a diag-
nosis scenario, we are given with a small set of speed paths
and a large set of non-speed paths. Hence, the learning is by
comparing speed paths to non-speed paths.

In the second scenario, a large number of paths are mea-
sured with scan test patterns on a number of chips. The path
delays are compared to the delays predicted by timing analy-
sis. In each diagnosis task, some paths are selected to be the
”abnormal” paths. Note that this abnormality is defined by ref-
erencing to the timing analysis result. For example, some paths
are much more under-estimated than the rest of the paths. Note
that this problem formulation is different from the speed path
analysis scenario where timing analysis result is not used in
defining the speed paths.

In both scenarios, we are given two classes of paths, one
smaller set of paths deemed to be special and the other larger
set of paths deemed to be the normal population. The goal is
to uncover the reasons behind the special paths.

The first important consideration is to decide if there are
commonalities among the special paths. If each special path
is unique in its nature, one may want to diagnose each special
path individually. In this case, the approach proposed in [27]
is more suitable. If one desires to find common reasons behind
multiple paths, then it can be treated as a two-class problem
and a rule induction approach such as [23][24] can be applied.

The second important consideration is to define the set of
features. In practice, this is not a trivial step. In the ideal sit-
uation, one would like to throw in as many different features
as possible and let the diagnosis framework to figure out what
features are relevant and what feature are not. In reality, fea-
tures may be hierarchical and diagnosis is applied iteratively.
For example, one may begin with a rough set of features cov-
ering cells and wires. If the diagnosis result indicates that the
problem is largely due to wires, then in the next round, more
detailed layout features describing the wires may be used. The
hierarchical approach allows user to focus diagnosis at the ab-
straction level of his/her interest. This is particularly useful for
interpretation of the diagnosis result in practice.

The third important consideration is in the validation of di-
agnosis result. Suppose the result is given as a set of rules.
Typically, the learning framework is capable of giving a con-
fidence measure on each rule it reports. However, one usually
would like to validate such rules before treating them as design
fixes. The validation process could be manual, for example by
consulting with the designer. The validation could be simula-
tion based, for example by applying the rules in a hypothetical
simulation environment to test their impact.

The last important consideration is how to apply the diag-
nosis result as design fixes. For example, if a rule says that
using a particular cell too many times along a clock path could
cause a problem, then one needs to decide what action to take
to fix the design. From the application point of view, one also
needs to decide how specific a rule is, i.e. whether it is general

3D-1

253

enough for other designs and/or technology nodes to adopt or
it is specific to the design and/or technology node only.

VI. CONCLUSION

This paper summarizes a data learning based diagnosis
paradigm that we call transduction diagnosis for differentiating
it from traditional root causing approach. In transduction diag-
nosis, design fixes are learned directly from data without going
through the expensive root causing steps. These fixes can be
in the form of a feature rank or feature-based rules, in terms
of features characterizing the design databases. We discuss
various learning algorithms that can be used to implement var-
ious functions in a transduction diagnosis framework and also
discuss practical considerations when applying such a frame-
work in different scenarios. The proposed framework is still in
its early development phase. More industrial experiments are
required to evaluate its effectiveness in practice. Additional
tools are under development to facilitate the integration of the
framework into existing design, test, and diagnosis flows.

REFERENCES

[1] K. Killpack, C. Kashyap, E. Chiprout. Silicon Speedpath Mea-
surement and Feedback into EDA flows. ACM/IEEE Design Au-
tomation Conference, 2007, pp. 390-395

[2] M. Buhler et al. DFM/DFY design for manufacturability and
yield - influence of process variations in digital, analog and
mixed-signal circuit design. Design, Automation and Test in Eu-
rope, 2006, pp. 387-392.

[3] H. Ramakrishnan, S. Shedabale, G. Russell, A. Yakovlev.
Analysing the effect of process variation to reduce parametric
yield loss. IEEE International Conference on integrated Circuit
Design and Technology, issue 2-4, 2008, pp. 171-176.

[4] C. Bittlestone, A. Hill, V. Singhal, Arvind N.V. Architecting
ASIC Libraries and Flows in the Nanometer Era ACM/IEEE De-
sign Automation Conference, 2003, pp. 776 - 781.

[5] P. Zuchowski, P. Habitz, J. Hayes, J. Oppold, Process and Envi-
ronmental Variation Impacts on ASIC Timing. ACM/IEEE Inter-
national Conference on CAD 2004, pp. 336-342.

[6] N. NS, T. Bonifield, et al, BEOL Variability and Impact on RC
Extraction. ACM/IEEE Design Automation Conference 2005, pp.
758- 759.

[7] R. Franch et al. On-chip Timing Uncertainty Measurements on
IBM Microprocessors. International Test Confernece, 2007.

[8] Li-C. Wang and Magdy S. Abadir. Dealing with timing issues for
sub-90n designs — from modeling to mass production. Full-day
tutorial, International Test Conference, 2005-2007.

[9] Noel Menezes, Chandramouli Kashyap, Chirayu S. Amin. A
”true” electrical cell model for timing, noise, and power grid ver-
ification. ACM/IEEE Design Automation Conference, 2008, pp.
462-467.

[10] F. N. Najm and N. Menezes. Statistical timing analysis based
on a timing yield model. Design Automation Conference, June
7-11, 2004, pp. 460-465.

[11] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, S.
Narayan. First-order incremental block-based statistical timing

analysis ACM/IEEE Design Automation Conference, June 7-11,
2004, pp. 331-336.

[12] D. Josephson et. al. Debug methodology for the McKinley pro-
cessor International Test Conference, 2001, pp. 451-460.

[13] M. Abramovici, M. Breuer. Fault Diagnosis Based on Effect-
Cause Analysis: An Introduction. ACM/IEEE Design Automa-
tion Conference 1980, pp. 69-76.

[14] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.
2nd edition, Springer 1999

[15] Miron Abramovici, Melvin A. Breuer, Arthur D. Friedman.
Digital Systems Testing and Testable Design Wiley-IEEE Press,
1994

[16] A. Krstic, et al. Delay Defect Diagnosis Based Upon Statistical
Timing Models - The First Step European Design Automation
and Test Conference, 2003, pp 328-333

[17] Pouria Bastani, et al. Diagnosis of design-silicon timing
mismatch with feature encoding and importance ranking - the
methodology explained. International Test Conference, 2008

[18] Li-C. Wang, et al. Design-Silicon Timing Correlation — A Data
Mining Perspective. ACM/IEEE Design Automation Conference,
2007, pp 384-389

[19] Leo Breiman, Random Forests Machine Learning Journal (45),
2001, pp. 5-32.

[20] Bernhard Schlkopf, and Alexander J. Smola. Learning with Ker-
nels: Support Vector Machines, Regularization, Optimization,
and Beyond. The MIT Press, 2001.

[21] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern
Analysis. Cambridge University Press 2004.

[22] Carl Edward Rasmussen, and Christopher K. I. Williams. Gaus-
sian Processes for Machine Learning. The MIT Press, 2005.

[23] P. Clark and T. Niblett. The CN2 induction algorithm. Machine
Learning 3, 1989, pp 261-283

[24] Ivan Bruha and Sylva Kockova. A support for decision-
making: Cost-sensitive learning system. Artificial Intelligence
in Medicine, issue 1, vol 6, 1994, pp 67-82

[25] Nicholas Callegari, et al. Classification Rule Learning using
Subgroup Discovery of Cross-Domain Attributes Responsible for
Design-Silicon Mismatch. Manuscript, Nov 2009

[26] Yonatan Aumann and Yehuda Lindell. A statistical theory for
quantitative association rule. Journal of Intelligent Information
Systems, 20:3, 2003, pp 255-283

[27] Nicholas Callegari, et al. Speedpath Analysis Based on Hy-
pothesis Pruning and Ranking. ACM/IEEE Design Automation
Conference, 2009.

[28] Sean H. Wu, Dragoljub Drmanac, Li-C. Wang. A Study of Out-
lier Analysis Techniques for Delay Testing. International Test
Conference, 2008.

[29] Pouria Bastani, et al. Speedpath Prediction Based on Learning
from a Small Set of Examples. ACM/IEEE Design Automation
Conference, 2008, pp 217-222

[30] Nicholas Callegari, et al. Feature based similarity search with
application to speedpath analysis. International Test Conference,
2009

3D-1

254

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

