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ABSTRACT
As lithography process nodes shrink to sub-wavelength lev-
els generating acceptable layout patterns becomes a chal-
lenging problem. Traditionally, complex convolution based
lithography simulations are used to estimate areas of high
variability. These methods are slow and infeasible for large
scale full chip analysis. This work proposes a solution to
this problem by using machine learning techniques to iden-
tify layout areas that are more prone to variability. A novel
target layout representation is proposed, and the latest sup-
port vector machine (SVM) algorithms are used to detect
variability within standard cells and between cells in a sim-
ulated full chip layout.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids; I.4.7 [Feature
Measurement]: Feature representation

General Terms
Algorithms, Performance, Reliability, Verification

Keywords
Photo Lithography, Process Variation, Modeling Variability,
Machine Learning, Kernel Methods

1. INTRODUCTION
As IC process nodes continue to shrink from 65 nm to

45nm and below, generating acceptable layout patterns be-
comes an increasingly difficult problem. Industry leading
foundries continue to depend on 193nm lithography sys-
tems to print the latest 45nm designs. Sub-wavelength pho-
tolithography results in unavoidable manufacturability is-
sues due to process variations and unforeseen cell-to-cell in-
teractions. To combat these problems, several resolution en-
hancement techniques (RET) have been employed such as
optical proximity correction (OPC) and phase shift masks
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(PSM); however, these methods often rely on complex simu-
lation models and are usually applied late in the design cycle
when only minor layout changes can be made. Lithography
simulation is the current golden standard for understanding
variability of new process nodes and cell designs, yet it is
prohibitively time consuming for full chip analysis. A first
order layout analysis approach is needed to quickly detect
areas of high variability within standard cells, and between
adjacent cells in full chip placements.

Dealing with variability early in the design process helps
prevent manufacturability issues, yet very few tools exist
that can choose between acceptable designs to minimize
variability. Several model-based design for manufacturabil-
ity (DFM) methodologies use variability analysis to manage
complex process-design interactions, however none of them
directly predict variability. For example, simulating stan-
dard cells in various configurations to measure context based
variability, or performing litho-aware electrical current cal-
culations to extract transistor parameters for accurate tim-
ing analysis [9]. The aforementioned DFM methods could
all benefit from a direct variability prediction tool, to avoid
the complications of lithography simulation and process pa-
rameter selection.

Understanding and predicting sources of variability is a
ubiquitous problem that has applications in various forms of
DFM. Most work in this area has attempted to combine vari-
ability metrics or models with existing DFM frameworks.
For example, pattern matching techniques have been used
in conjunction with standard design rule checking (DRC)
software to identify layout configurations that are difficult
to manufacture in the presence of lithographic process varia-
tion [4]. While this helps DRC software capture some prob-
lematic 2D geometries, it relies on manual pattern selection
based on slow lithography simulation and human judgment.

Figure 1: Variability Prediction Overview
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Improvements to standard OPC techniques have also been
made by incorporating analytical process variation models
that account for fluctuations in dosage and focus [10]. While
this improves OPC’s awareness to variability issues, it does
so at a cost of two to three times traditional OPC runtime.
Most existing DFM tools work to improve printability of
placed and routed layouts, however many key problems are
generated early in the design cycle when details about the
manufacturing process are unavailable [6].

This paper proposes a novel machine learning framework
for quickly predicting areas of high variability within stan-
dard cells, and between cells in full chip layouts. Figure 1
shows an overview of two proposed machine learning ap-
proaches for predicting variability. The first method builds
a variability classifier using training samples labeled with
lithography simulation scores from a subset of cells. The
second approach learns to predict variability by analyzing a
small layout portion without simulation. Both methods can
predict variability in standard cell libraries or across full chip
layouts. The rest of the paper is organized as follows. Sec-
tion 2 will go over measuring variability using lithography
simulation. Section 3 will describe our novel layout repre-
sentation that makes variability prediction possible. Section
4 will outline the two variability prediction methods in de-
tail, and section 5 will discuss the experiments and results.
Section 6 will conclude the paper followed by references in
section 7.

2. MEASURING VARIABILITY
In this work we focus on predicting variability in printed

45nm metal layers with respect to changes in dosage and fo-
cus. To quantify variability, an industry leading lithography
simulator is used in conjunction with a defined variability
metric to guide and validate our predictions.

2.1 Lithography Simulation
Lithography simulation is currently the most common ap-

proach for predicting intra-cell and cell-to-cell variability.
We use a lithography simulator to create process variation
(PV) bands showing the possible areas within which a given
metal layer will print, as dosage and focus conditions vary.
Figure 2(a) shows a metal target layer and its correspond-
ing PV bands. Notice how the width of the bands changes
depending on different neighboring geometries; the thicker
the band, the more uncertainty there is in the final edge
placement.

2.2 Variability Metric
Lithography simulators commonly scan PV bands and as-

sign variability scores to layout areas according to a simple
metric. Usually, the metric is a measure of PV band area
normalized by the window under which the variability calcu-
lation is performed. In this work we introduce an analogous
variability measure, the PV band area normalized by the
empty target area. Figure 2(b) shows how this calculation
is performed. First a square window is selected to perform
the calculation under, then the PV band area within the
window is calculated and normalized by the area within the
window not covered by metal layer polygons. We normalize
by the empty target area to ensure that variability in denser
layout regions is treated as more critical. For a fair com-
parison of variability we purposely chose a metric similar to
existing industry standards.

(a) Simulated PV Bands

(b) Variability Metric

Figure 2: Calculating the Variability Measure

3. NOVEL LAYOUT REPRESENTATION
The graphic data system (GDSII) file format is the in-

dustry standard for storing and transferring large layout
designs, however its representation is limited since entire
layouts are saved as a set of planar geometric shapes. To
perform variability prediction we propose an intermediate
layout representation that captures relative shape and po-
sition information, called the histogram distance transform
(HDT). Concepts from image processing and feature encod-
ing are discussed to introduce this novel representation.

3.1 Image Processing
Since variability changes based on configurations in a two

dimensional space, image processing techniques can help de-
compose target layouts, and encode them such that efficient
variability prediction is possible. In this section we discuss
two bitmap image formats, image histograms, the distance
transform, and raster scanning.

3.1.1 Bitmap Image Representations
All target layouts, PV bands, and intermediate transfor-

mations are represented using simple bitmap images. The
simplest image format we use is called the portable bitmap
(PBM) which is just an array of 1’s and 0’s representing
black and white pixels. This image format was selected to
represent our target layouts because of its simplicity and
software compatibility. To store results of image transforms
we used a grayscale image format called portable gray map
(PGM) which is similar to PBM except each pixel is an in-
teger from 0-255 representing the 256 grayscale levels. Since
we do not store intermediate images during processing our
methodology does not require a large memory or compressed
image formats.

3.1.2 Image Histogram
An image histogram is a compact representation that cap-

tures the distribution of intensity levels present within a
grayscale image. In PGM images there are 256 grayscale
levels so the image histogram has 256 bins on the x-axis and
displays the number of pixels per bin on the y-axis. An ex-
ample grayscale image and its corresponding histogram are
shown in Figure 3. Usually, one grayscale value dominates
the image so to get a more normalized result we take the
log of the number of pixels for each intensity value. This is
an abstract translation and rotation invariant representation
that captures a great deal of information content [3].
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Figure 3: Image Histogram

3.1.3 Distance Transform
The distance transform is an image processing technique

that converts a black and white bitmap image into a grayscale
image by replacing each white pixel with the distance to
the nearest black/white pixel boundary. Since computed
distances can be large, each pixel is renormalized to fit in
the 256 grayscale range. An example binary image and its
distance transform are shown in Figure 4. The distance
transform has converted the white rectangle into a grayscale
image where each pixel value represents its distance to the
nearest boundary. In this simple example the boundary is
the perimeter of the white rectangle.

Performing the distance transform can be seen as an en-
coding of shape information for a given binary image. After
the transform is performed a more descriptive image results
that captures overall shape, length, and width [5]. The dis-
tance transform also approximates the skeleton of a binary
shape, which shows up as the bright pixel areas similar to
an x-ray. We use an efficient Euclidian distance transform
algorithm proposed in [5].

(a) PBM Image (b) Distance Transform

Figure 4: Distance Transformed Rectangle

3.1.4 Raster Scanning
Since layouts are often large compared to the local fea-

tures contributing to variability, it is important to raster
scan layouts to extract local features. Our raster scanning
procedure is shown in Figure 5. We start with a 100x100
pixel window and move it around the target layout captur-
ing samples with a step size of 50 pixels. This gives us a
50% overlap between raster windows and ensures good cov-
erage of each cell. The scanned images are scaled so each
pixel corresponds to 3nm2 on the actual target layout. This
resolution is fine enough to capture detailed spatial infor-
mation without slowing the system down with unnecessary
data processing.

3.2 Encoding Layout Features
Figure 6 shows the procedure for transforming a GDSII

layout into our novel HDT representation. We extract the
target outline from a GDSII file and save it as a binary
PBM image, next we compute the distance transform of the

Figure 5: Raster Scanning a Cell

target outline and obtain a grayscale PGM image, finally we
take the histogram of a small raster scanned portion of the
resulting image as our target layout representation for that
small area. The distance transformed layout is fully raster
scanned; with each step of the raster window a histogram is
computed and stored as a 256 dimensional vector. After the
transformation is complete the target layout is represented
as a set of histogram vectors.

The distance transform of a target layout captures the
distribution of spacing between polygons. Bright areas cor-
respond to spread out polygons and dark areas correspond
to tightly packed polygons. Notice that polygon shape is
also captured by the transform computed within the tar-
get outlines. Fine skeleton structures appear encoding the
shape and size of the original layout. Although this is an
abstract representation of relative shape and spacing, small
layout areas can accurately be represented in this way. The
distance transform captures local shape and spacing infor-
mation, while the histogram gives us an efficient means of
storing and working with that information.

Figure 6: Novel Target Layout Representation

4. PREDICTING VARIABILITY
Variability prediction is performed using SVM learning al-

gorithms. In machine learning theory there are two funda-
mental learning approaches, supervised and unsupervised.
Supervised learning estimates a function from a set of la-
beled training examples, to solve regression or classification
problems, while unsupervised learning estimates the sup-
port of the training data without labels, to solve clustering
or outlier detection problems. In this work we use two-class
and one-class nu support vector classifier (ν-svc) algorithms
proposed by [7] and [8], and a modified version of the open
source LibSVM software package implemented by [2].

4.1 Layout Similarity Measure
To use our HDT layout representation in a machine learn-

ing framework we define a function to measure similarity be-
tween two raster windows. A kernel function K(�x, �y) com-
putes the similarity between two sample vectors. Since our
target layout representation is histogram based we use the
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histogram intersection kernel shown below, where �x and �y
are 256 dimensional histogram vectors.

K(�x, �y) =
256∑
i=1

min(xi, yi)

This kernel is efficient because it calculates the intersection
of each histogram bin without time consuming multiplica-
tion or exponentiation. Intuitively, we can see that the larger
the intersection between two histograms the more similar
they are. The histogram intersection kernel has been shown
to perform well in image recognition tasks by [1].

4.2 Two-Class Supervised Learning
Two-class SVM analysis generates a predictive classifier

that detects areas of high variability based on labeled train-
ing samples picked from a standard cell library. A training
sample is a 100×100 pixel layout window encoded using our
HDT layout representation. Each window is assigned a vari-
ability score calculated from PV bands using the variability
metric previously defined. Since ν-SVC performs pass/fail
classification, a variability score threshold is established to
label high variability areas as failing and low variability areas
as passing. Each sample is constructed as a training-label
histogram-vector pair (li, �si), where �si = (h1, h2, ..., h256)
contains 256 histogram components h1 − h256, encoded us-
ing our HDT representation, and a pass/fail classification
label li, determined by variability score thresholding.

To train a variability prediction model the ν-SVC soft
margin classifier is used to separate high and low variability
samples with maximum margin in a 256 dimensional feature
space. Since the classification space is large many separating
hyperplanes exist, so optimization is used to find one that
maximally separates the training data. A maximally sepa-
rating hyperplane ensures that our classifier will be general
enough to correctly label unseen samples as having low or
high variability. The problem is formulated as the following
quadratic programming optimization.

Maximize − 1

2

m∑
i,j=1

αiαj liljK(�si, �sj)

Subject to 0 ≤ αi ≤ 1

m
,

m∑
i=1

αili = 0,

m∑
i=1

αi ≥ ν.

Where αi,j are Lagrangian multipliers, �si,j are training sam-
ples, li,j ∈ {±1} are pass/fail training labels, ν is the frac-
tion of accepted training errors, and K(�si, �sj) is the his-
togram intersection kernel. In general, training samples may
not be linearly separable so ν is used to control the fraction
of misclassified samples allowed when establishing a bound-
ary, namely how soft the margin will be. When optimization
is complete, some Lagrangian multipliers are zero, indicat-
ing that their corresponding training samples play no role
in establishing the classification boundary. Samples with
nonzero Lagrangian multipliers influence the boundary and
are called support vectors. The resulting two-class SVM
classifier consists of a decision function f(�x) used to classify
new samples, and set of support vectors defining the classi-
fication boundary. The decision function is shown below.

f(�x) = sgn

(
m∑

i=1

αiliK(�x, �si) + b

)

f(�x) is a weighted sum of similarity between all support vec-
tors and the current sample being classified. The histogram
intersection kernel K(�x, �si) compares new samples to the set
of support vectors, so that a pass/fail decision can be made.

4.3 One-Class Unsupervised Learning
One-class SVM can be viewed as an outlier analysis algo-

rithm that places the ultimate outlier at the origin. Samples
far from the origin are labeled as normal and samples near
the origin as abnormal. In the context of our problem and
the HDT layout representation, the origin represents layouts
that have uniform shape and spacing. When raster scanning
metal layers, uniform shape and spacing most often occurs in
areas with tightly packed parallel wires. In these areas, the
critical dimension of processing is being pushed to the limit,
and surrounding geometries substantially influence parallel
wire widths, so we expect these areas to exhibit variability.

Outlier analysis is performed using the one-class ν-SVC
algorithm. Each raster scanned window is constructed as a
sample vector �si = (h1, h2, ..., h256). In this case our sam-
ple has no training label attached to it since the algorithm
assumes all samples are of the same class, and the origin
is the only sample of the outlier class. The one-class algo-
rithm maximally separate samples from the origin using the
following quadratic programming optimization.

Minimize
1

2

m∑
i,j=1

αiαjK(�si, �sj)

Subject to 0 ≤ αi ≤ 1

νm
,

m∑
i=1

αi = 1.

Where αi,j are Lagrangian multipliers, �si,j are training sam-
ples, ν is the fraction of samples we expect to have high
variability, and K(�si, �sj) is the histogram intersection ker-
nel. This is similar to the previous optimization problem,
except it does not depend on any training labels. After
optimization is complete, samples with nonzero Lagrangian
multipliers are support vectors and define the classification
boundary. Once the boundary is established the outlier mea-
sure for each sample can be computed using the function
g(�x) shown below.

g(�x) =
m∑

i=1

αiK(�x, �si) − ρ

In general, there will be many outliers of various degrees, so
it is important to perform an outlier ranking to examine the
worst outliers. g(�x) returns positive and negative numbers,
where positive numbers correspond to normal samples and
negative numbers correspond to outliers. Using g(�x) it is
possible to rank-select the top 500 outlier windows and draw
them on the target layout giving a clear picture of where
variability occurs.

5. EXPERIMENTS AND RESULTS
Variability analysis was performed on 45nm metal lay-

ers extracted from 22 standard cells, and a large random
tiling of those cells. Analysis performed on individual cells,
from which more complicated layouts can be constructed, is
called cell-based, while analysis performed on a tiling of cells
is called chip-based. Both cell-based and chip-based analy-
sis was performed using two-class and one-class algorithms.
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First, a 22 cell library was analyzed using both methods to
ensure prediction accuracy, then a large layout based on a
random cell tiling was analyzed to measure variability pre-
diction accuracy on a realistic scale.

5.1 Cell Library Analysis
The first cell based experiment examined how accurately a

classifier trained with 11 of 22 simulated cells could correctly
predict variability in the unseen half. To verify prediction
accuracy all 22 cells were simulated and pass/fail variability
labels were calculated. Overall prediction accuracy was de-
termined by comparing simulation and classification results.
To train the classifier 11 large cells were scanned and gen-
erated 3960 training samples. To validate the classifier 11
smaller cells were scanned and generated 1584 testing sam-
ples. Larger cells generating more samples were used for
training so that a generally representative variability classi-
fier could be built. The second cell-based approach directly
applied one-class outlier analysis on all 22 cells to compare
how accurately it could classify samples relative to simula-
tion results. In this case, training labels were not needed
for analysis but only used to compute the classification ac-
curacy.

Table 1 shows the classification accuracy for cell-based
analysis using both one-class and two-class methods. Two-
class SVM analysis achieved a 92.4% classification accuracy
on unseen cells, and one-class outlier analysis correctly clas-
sified 85.1% of all cells without simulating to generate vari-
ability scores. The one-class method classified low and high
variability samples with the same 85% accuracy, while the
two-class method more accurately classified low variability
samples than high variability samples. This is expected,
since the two-class method was trained with more low vari-
ability samples, it learned a better concept of low variabil-
ity. In one-class analysis no training labels were used, so the
learned model was not biased toward predicting low or high
variability.

Learning Variability Prediction Accuracy
Method Total Low Var. High Var.

2-Class 92.4% 95.0% 86.5%
1-Class 85.1% 85.2% 84.8%

Table 1: Cell-Based Prediction Accuracy

5.2 Full Chip Analysis
Full chip analysis was performed in two ways; either by

binary classification, or by one-class SVM outlier analysis.
The advantage of one-class analysis is that it is an unsuper-
vised method capable of classifying samples without depend-
ing on lithography simulation for training labels. The dis-
advantage is that the only way to introduce prior knowledge
about variability is through your data representation and
kernel function. According to features encoded by our HDT
layout representation, the one-class outlier analysis method
will identify abnormal layout areas that are likely to exhibit
high variability, while the two-class method will identify lay-
out areas that are similar to previously seen high variability
samples.

The tiled layout shown in Figure 7 was analyzed using
a two-class variability predictor trained with the full 22 cell
library, as well as a one-class outlier model trained with sam-

ples from the scanned tiled cell layout. Raster scanning the
layout generated 50,000 samples that needed to be analyzed
and validated. Since the constructed tiling was very large
it was time consuming to fully simulate, so three predicted
clusters of high variability were selected for validation by
lithography simulation. These cell clusters are thickly out-
lined in Figure 7 and labeled Tiled Simulations 1-3.

Figure 7: Predicted Variability on a Chip Layout

Two-class SVM analysis trained a high/low variability
predictor based on lithography simulation of a cell library,
and subsequently used that predictor to perform full layout
analysis. Figure 7 show the top 500 areas of high variabil-
ity detected by the binary classifier marked with small red
squares. High variability areas are detected within and be-
tween standard cells showing that the model can generalize
well and detect variability caused by unforeseen cell-to-cell
interactions. One-class outlier analysis was performed on
the same tiled layout and the top 500 areas of high vari-
ability were found to be very similar to those predicted in
Figure 7 indicating that our two variability prediction ap-
proaches are consistent.

To show full-chip variability prediction is accurate, we
chose three highlighted groups of adjacent cells in Figure 7,
to verify by lithography simulation. After simulation, a
grayscale map corresponding to the variability scores was
printed across each set of adjacent cells. Darker areas corre-
spond to higher variability, and lighter areas indicate lower
variability. Figure 8 shows high variability areas predicted
by lithographic simulation as well as areas of high variability
predicted by our two-class full chip method. Across all three
simulations it is clear that the darkest areas corresponding
to high variability are well predicted by our SVM models.
Moreover, we see that accurate variability prediction is pos-
sible between adjacent cells, without explicit enumeration of
cell-to-cell interaction contexts.
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(a) Tiled Simulation 1

(b) Tiled Simulation 2

(c) Tiled Simulation 3

Figure 8: Simulated vs. Predicted Variability

5.3 Performance
Table 2 summarizes the runtime of SVM variability pre-

diction compared to conventional lithography simulation.
Both cell-based models ran quickly, taking on average 30 sec-
onds to train, and 6 seconds to classify the full cell library.
This speed can be attributed to the small number of support
vector comparisons required to determine the class of a sam-
ple. Chip-based analysis was slower due to the larger area
being scanned and analyzed. Two-Class chip-based analysis
took 249 seconds to complete, since training only required
scanning the small cell library. One-class chip-based analy-
sis took 1308 seconds to analyze all 50,000 layout samples.
This was a much slower analysis approach since it trained
with more samples and classification depended on more sup-
port vectors. Classification can be accelerated by splitting
test data into small subsets and using multiple processors to
classify each subset in parallel. In comparison, lithography
simulation took 1.5 hours to analyze the cell library, and ap-
proximately 33 hours to analyze the tiled cell array, which
is 70-90x slower than SVM classification. All analysis was
performed on a 3 GHz Core 2 Quad running Linux.

Method Raster Train Predict Total

2-Class Cell 18 s 48 s 5 s 71 s
1-Class Cell 18 s 11 s 6 s 35 s
Litho. Cell - - 1.5 h 1.5 h

2-Class Chip 165 s 48 s 36 s 249 s
1-Class Chip 165 s 865 s 278 s 1308 s
Litho. Chip - - 33 h∗ 33 h∗
∗Based on 10 minute per-cell average runtime.

Table 2: Runtime Comparison

6. CONCLUSION
This paper introduced a new machine learning method-

ology for detecting areas of high variability within and be-
tween standard cells in full chip layouts. A novel HDT lay-
out representation was used in conjunction with the latest
SVM learning techniques to correctly predict areas of high
variability according to a defined variability metric. Sev-
eral experiments were performed and validated by an indus-
try leading lithography simulator, showing that intra-cell
and cell-to-cell variability could be predicted with high ac-
curacy. Runtime of variability prediction was shown to be
much faster than that of conventional lithography simula-
tion, allowing high-speed first-order variability prediction.
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