
Path selection for monitoring unexpected systematic timing effects

Nicholas Callegari1, Pouria Bastani1, Li-C. Wang1, Sreejit Chakravarty2, Alexander Tetelbaum2

1Department of ECE, University of California, Santa Barbara
2LSI Corporation

Abstract— This paper presents a novel path selec-

tion methodology to select paths for monitoring un-

expected systematic timing effects. The methodology

consists of three components: path filtering, path en-

coding, and path clustering. Given a large set of crit-

ical paths, in path filtering, the goal is to filter out

paths that cannot be functionally sensitized. To ex-

plore the space of unexpected timing effects, a set of

features are defined to encode paths into path vec-

tors. Each feature is a source of concern that may

potentially contribute to the cause of an unexpected

timing effect. Finally, a kernel-based clustering algo-

rithm is employed to group similar path vectors into

clusters from which the best representative paths are

selected for post-silicon monitoring. The effectiveness

of our proposed methodology is demonstrated through

experiments on an industrial ASIC design.

I. Introduction

At each transition between technology nodes, as well
as evolution in process and manufacturing, models and
design methodology are constantly changing for accu-
rately predicting silicon. However, even with significant
effort put forth to minimize design-silicon mismatch, un-
expected timing effects can still arise due to sources or
combinations of sources that are not, or not accurately,
modeled and analyzed. These timing effects can be the
reasons for the loss of timing yield and hence, need to be
carefully monitored in the post-silicon stage.

One way to monitor these effects are through on-chip
test structures. Test structures, such as ring oscillators,
have been used to monitor integrated circuit performance
for many years [1, 2]. Test structures are primarily de-
signed to provide a measure of performance, power and
variability [3]. The data measured from test structures
relates these measures to the properties of low level de-
vice parameters, in particular to MOSFETs and to para-
sitic delay elements [4, 5]. Using on-chip test structures
requires one to hypothesize the effects and develop ded-
icated methodologies to measure them [6]. Because test
structures are precious on-chip resources, they are often
used only to monitor first-order known timing effects, and
usually not sufficient to explore the entire space of unex-
pected timing effects.

The alternative is to monitor the effects through AC
scan. In AC scan, one can use two types of tests: transi-

tion fault tests and path delay tests. Using transition fault
tests may be a convenient choice because often they are
already prepared for AC delay testing. However, there is
no effective methodology existing today to correlate mea-
surement results from transition fault tests back to mod-
els, design, and/or design methodology. Moreover, there is
no reliable method proposed to estimate the effectiveness
of a transition fault test set with respect to monitoring
unexpected timing effects.

For diagnosing unexpected systematic timing effects,
the authors in [7, 8] proposes a path based methodology.
In the methodology, path delay tests are used to measure
the delays of a set of paths on a set of silicon samples.
The measured delays are correlated back to the predicted
path delays from a static timing analyzer. The result of
this correlation analysis is a rank of so-called features that
point to the sources of unexpected effects. In the method-
ology, the set of paths to analyze is assumed to be given.
Therefore, it does not answer the question of what paths
need to be monitored in the first place.

In this work, we follow the path based framework em-
ployed in [7, 8]. However, instead of solving a diagnosis
problem, we solve a path selection problem, and the goal
is to develop a methodology to select an optimal set of
paths to be measured by path delay tests. In this context,
the merit of a path set is evaluated based on its size and
the coverage of the space of the unexpected timing effects.

The rest of the paper is organized as the following. Sec-
tion II explain the path selection problem investigated in
this work. Section III presents an overview of the method-
ology proposed. Section IV discusses path filtering where
functionally unsensitized paths are identified using a com-
mercial ATPG tool. Section V describes in detail the ap-
plication of a clustering algorithm to select representative
paths. Section VI explains the experimental methodology
and presents results to demonstrate the effectiveness of
the clustering based path selection approach. Section VII
concludes the paper.

II. Background and Problem Description

Design-silicon timing mismatch has been a known phe-
nomenon for high-performance processor design for many
years [8]. For example, timing critical paths reported from
timing analysis are not the actual speed-limiting paths
showing up on silicon samples [9]. However, only in recent
years has the timing mismatch begun to raise concern for

978-1-4244-2749-9/09/$25.00 ©2009 IEEE

8C-3

781

ASIC designs. The main reason for the concern is the low
timing yield often observed at 65nm and below. Because
timing models and tools are not perfect, it is possible that
an unexpected timing effect occurs in a design and causes
some of the yield loss. Uncovering such an effect and fixing
the design to avoid it can be the two steps for improving
yield.

An unexpected timing effect can be due to something
that is not, or not accurately modeled and analyzed in the
design process. Because in pre-silicon modeling and anal-
ysis, assumptions are made and approximations are taken
everywhere, the space for potential unexpected timing ef-
fects can be enormous. To effectively explore this space,
the authors in [8] utilize a set of features to encode the
space. A feature represents a source of concern that may
contribute to the cause of an unexpected timing effect.
The work in [7] then provides a survey of where those
features may be defined.

Given a set F of n features, F = {f1, . . . , fn}, one can
hypothesize a space of unexpected timing effects based on
F . For example, one may concern all effects associated
with any feature individually as well as any combination
of two features. In this case, the total number of effects
to consider is n +n C2 = n + n(n−1)

2 .

Given a set of m paths, each path is encoded with the
features into a path vector. For simplicity, let’s assume
that all features are occurrence based [7]. That is, each
path is a vector v consists of n 0’s and 1’s. v[i] = 1 if
feature fi shows up on the path. Otherwise, v[i] = 0.
Then, the goal of path selection is to select a subset of k

paths such that all n + n(n−1)
2 effects are covered.

In this work, we assume that the feature set F is given.
In addition, the hypothesis for the space of unexpected
timing effects can also be user-defined. Typically, the
number k of selected paths is determined by the avail-
able test resource, such as the number of test patterns
allowed. Given k, the goal of path selection is then to
select the best k paths to maximize the coverage of the
hypothesized unexpected timing effect space.

The formulation of the path selection problem is differ-
ent from others that have been studied in the past. For
example, the authors in [10] use a statistical method, and
location based correlation for critical path selection in the
context of delay testing. The goal is to maximize coverage
for statistical, location-based delay defects. The authors
in [11] present a statistical path delay fault coverage met-
ric, taking into account structural and spatial correlation.
It is designed for timing validation against variations and
not for monitoring unexpected timing effects. The au-
thors in [17] use graph theory combined with ATPG to
identify a set of the longest testable paths that cover ev-
ery gate, however due to the complexity of todays designs
identifying and testing every sensitizable gate may not be
reasonable.

III. Overview Of The Methodology

Figure 1 illustrates the path selection methodology pro-
posed in this work.

Fig. 1. Overview of the path selection methodology

The methodology begins with a design, netlist, in which
a static timing analyzer (STA) is applied to produce a tim-
ing report. In this report, an initial set of timing critical
paths are included. The netlist is modified via time frame
expansion that will be explained in Section IV. The un-
rolled, time frame expanded, netlist is combined with an
ATPG tool to analyze the sensitization of each critical
path. A path that fails to be sensitized is then removed
from further consideration. The resulting paths, which
can be sensitized on the time frame expanded netlist, are
called pseudo-functional paths [12].

A set of features are defined to explore the space of un-
expected timing effects [7]. Each pseudo-functional path
is then encoded with these features as a path vector. A
kernel function is used to interpret the features. The in-
terpretation is in the following sense. Given two path
vector p1, p2, a kernel function k(p1, p2) gives a similarity
measure between the two vectors [13]. For example, let
p1 = (1, 1, 0) and p2 = (0, 1, 1). A dot-product kernel cal-
culate the similarity as k(p1, p2) = 1 × 0 + 1 × 1 + 0 × 1
= 1. Note that there are many kernels widely used in di-
verse machine learning applications [13]. Also note that in
the path selection methodology, the kernel in use depends
on one’s hypothesis of the unexpected timing effect space.
For example, in Section V we will explain a Spectrum ker-
nel that takes the consecutive ordering of the cells along
a path into account.

8C-3

782

Once a kernel function is decided, the clustering algo-
rithm then groups paths into clusters where similar paths
are put into the same cluster. A path is selected from
each cluster to form the set of representative paths. As
we can see, representative paths are dissimilar paths for
maximizing the coverage, where the similarity is defined
by the kernel function. From this perspective, the ker-
nel function implicitly define the unexpected timing effect
space to be explored.

IV. Path Filtering

With a commercial STA tool, we are able to select the
top i critical paths ending at every flip flop. We begin by
including as many paths as possible, limited by the avail-
able computation resource. This path set is pruned by re-
moving functionally unsensitizable paths. Similar analysis
has been done before to path-delay test in [14], by apply-
ing ATPG to identify which of the STA reported critical
paths are actually sensitizable. More advanced technique
has been used in [12] by applying Boolean satisfiability
solver to identify pseudo-functional paths.

Our implementation utilizes a design unrolling tech-
nique where the design is unrolled based on time frame
expansion (TFE) to simulate multiple clock cycles. As
described in [12], Boolean SAT solver can be applied to
the unrolled design in combination with a path to deter-
mine if previous time frames (clock cycles) can provide
the proper inputs to the last time slice to properly sensi-
tize the path. What is achieved by implementing TFE is
pseudo-functional path identification, where a path that
cannot be sensitizable by structural test, can be filtered.
By using this method, paths that are identified pseudo-
functional are not guaranteed to be functionally sensitiz-
able paths. However, paths that are identified not to be
pseudo-functional are guaranteed not to be functionally
sensitizable paths. Therefore by using this process we are
able to reduce the original set of paths, and be assured
not to remove any functionally sensitizable paths. In our
implementation, instead of using a Boolean SAT solver,
we used a commercial ATPG tool because it is readily
applicable to industrial designs.

One issue that can be seen with time frame expansion is
the increase in design size. For each time frame the design
is unrolled, the new unrolled design becomes N ×D + D,
where N is the number of times the design is unrolled,
and D is the size of the original design. Techniques can
be incorporated such as partitioning the design by clock
domain, which is common practice in large scale designs.
If the increase in design size cannot be overcome, ATPG
alone without TFE can still provide a significant reduc-
tion in paths and does not hinder the overall representa-
tive path selection flow. Nevertheless, although relatively
design dependent, shown in Table I, in our experience,
with the minimal overhead of only unrolling our design
one time frame we are able to filter out the majority of
non-functional paths identified by TFE.

To test our implementation we conducted time frame
expansion on an industrial ASIC design consisting of 220K
gates. We varied the the number of time frames from 0,
1 and 5, 0 being the original design, and 1 and 5 being
the the original design plus 1 and 5 copies of the design to
simulate 1 and 5 clock cycles prior. We show the number
of sensitizable paths identified, as well as the reduction of
paths compared to the original number of paths.

TABLE I
Path Filter Results

Total Paths 0-cycles 1-cycles 5-cycles
8332 3029 1567 1540

%Reduction 63.65% 81.19% 81.51%

Because we obtained such a significant reduction in
paths in the first unrolling, and minimal improvement
thereafter, we chose to select the 1,567 paths to represent
our pseudo-functional paths to continue with the remain-
der of the flow.

V. Clustering

The Fuzzy c-means clustering algorithm was used in this
work, however other clustering algorithms can be consid-
ered for the methodology. We selected Fuzzy c-means be-
cause the algorithm incorporates fuzzy logic in which each
path has a degree of belonging to each cluster, rather than
only belonging to one specific cluster. Defined by [15]
Fuzzy c-means clusterings objective is to maximize the
inter-cluster variance and minimize the intra-cluster vari-
ance. The cluster center is placed where the objective is
reached given the constraints of the number of iterations
and/or the procedure converging to a local minimum of
the objective function. The objective function of Fuzzy
c-means clustering is as follows;

Jm(U, V) =
∑c

i=1

∑n
k=1 um

ik × dist(xk, vi), where:
•X = {x1, x2,, xn} ⊂ Rs is the data set to be studied
•c, 2 ≤ c ≤ n is the number of clusters in X
•m, 1 ≤ m is a weighting factor exponent; when m is

close to 1, fuzzy c-means behaves similarly to the K-means
clustering algorithm.
•uik = ui (xk) is the membership of xk in cluster ui;

usually, we have
∑c

i=1 ui(xk) = 1.
•U = [uik] is a fuzzy c-partition of X
•vi is the center of cluster i
•dist(xk, vi) is the OG distance of any inner product

norm on Rs from xk to vi

Mathematically defined;

uik = 1
∑c

j=1

(
dist(xk,vi)

dist(xk,vj)

) 2
m−1

vi =
∑n

k=1 uikxk∑n
k=1 uik

Given a kernel function k(), the OG distance can be
calculated as k(xk, xk) − 2k(xk, vi) + k(vi, vi). Note that

8C-3

783

this is the kernel-based extension of the original Fuzzy c-
means algorithm. In the original algorithm, the distance is
nothing but the Euclidean distance calculation ||xk−vi ||2.

Fuzzy c-means performs iterative optimization of the
objective function J , updating the membership, uik, of all
paths, xk, to all clusters, and updating the cluster centers
vi. The iteration stops when the user specified termination
criterion is met, which is when the improvement in uik (the
sum of membership for all paths for each cluster) is less
than the termination criterion. This is essentially a local
minimum of the objective function J .

Once the termination criterion is met, the path with
the greatest membership to each cluster is included into
the representative path set. By selecting the path with
the greatest membership we select the centroid path, the
path with the most similarity to every other path in the
cluster. We output the resulting membership values for
every other path for each cluster as our resulting clusters.

Although less critical paths are being considered, our
objective is to maximize coverage of the space of unex-
pected timing effects. Therefore if a less critical path is
selected, from delay test we can determine if mismatch
exists. From further analysis the unexpected timing effect
causing the mismatch can be identified for more critical
paths.

A. Spectrum kernel

In this work, we use a Spectrum kernel [13] to measure
similarity between a pair of paths. The hypothesis is that
an unexpected timing effect can be due to the presence
of a single cell or a combination of j cells connected in a
certain order, for example a weak cell driving a large cell.
To illustrate the kernel computation, suppose we have 5
cells A, B, C, D, E. Consider a path p1 = ABACCEA
and p2 = CBACD. For the case of single cell, p1 =
{A, B, C, E} and p2 = {A, B, C, D}. Hence, they share
3 cells. For j = 2, p1 = {AB, BA, AC, CC, CE, EA},
and p2 = {CB, BA, AC, CD}. They share BA and AC.
Hence, their 2-Spectrum measure is 2. Together, we have
k(p1, p2) = 2 + 3 = 5.

The Spectrum kernel can be defined for j up to the
maximum number of cells on a path. For demonstration
purpose, in this work we only experiment with j = 2. Note
that with a Spectrum kernel, the features are individual
cells themselves.

B. Selecting The Number of Clusters

A difficulty accompanied with clustering algorithms is
selecting the optimal number of clusters. If we select too
few clusters we may not cover all potential unexpected
effects. If we select too many clusters, we may exceed the
limit on the number of test patterns.

C. Elbow Criterion

Introduced by [16], the concept of the elbow criterion
can be applied to identify an optimal number of clusters

based on the objective function. The elbow criterion de-
scribes how one can select the number of clusters in such a
manner that adding another cluster does not add sufficient
information, i.e. explain variance. More specifically, what
is seen is the law of diminishing returns, in which if one
graphs the variance explained by the clusters against the
number of clusters. When initial clusters are added, infor-
mation gained is large, where as with subsequent clusters
added, the amount of information gained reduces. When
applying the elbow criterion to this concept, one essen-
tially pick the elbow, the number of clusters in which the
gain by adding additional clusters starts to diminish.

To apply this concept to our dataset, we ran the Fuzzy
c-means clustering algorithm on the 1567 paths obtained
after the path filtering. The resulting variances are ob-
tained directly from our objective function, Jm(U, V), by
varying the number of clusters from 5 to 500. As shown
in Figure 2, the elbow is somewhat ambiguous, where any
number of of clusters between 100 to 200 could be seen as
the elbow. Conversely, the elbow is specific in the sense
that we can eliminate between 0 to 100, and greater than
200 clusters. For the experiment we selected 150 clusters
for estimating its coverage.

Fig. 2. Selecting the optimal number of clusters using
Elbow Criterion

D. Feature coverage criterion

A straightforward method, in addition to the objective
function, for deciding the number of clusters is to imple-
ment a feature coverage estimator. For example, given
n features, there are n individual features to cover and
n(n − 1) ordered pair of features to cover. Given a set
of clusters, one can then calculate the percentage of these
n + n(n− 1) effects being covered. Figure 3 shows such a
coverage estimation, varying the number of clusters from
5 to 500.

Two interesting things can be observed in this plot.
First, the selection of 150 clusters based on the elbow cri-
terion earlier does represent a point where the return, in
terms of feature coverage, of adding more clusters is di-
minishing. Second, by adding more clusters the coverage
result never decreases. This monotonic behavior of the
path selection algorithm is desirable because then it is
safe to select more paths if the test resource allows.

8C-3

784

Fig. 3. Selecting the optimal number of clusters using
feature coverage criterion

VI. Experiments

To show the effectiveness of our algorithm, we randomly
inject a single timing error into the design and calculate
an error coverage by a given path set. The timing errors
are to simulate systematic unexpected timing effects. A
timing error can be associated with a feature or an ordered
pair of features.

For comparison, we also selected two other path sets,
one by random selection from the 1567 paths and the
other by selecting the top timing critical paths, where the
criticality was decided by the STA tool. For the random
selection, we repeated the experiment 100 times and took
the average to avoid bias. For the clustering representa-
tive paths we extracted the most centroid point from each
of the 150 clusters.

In each experiment, we randomly formed 100 timing
errors and compared the coverage results based on the
three path sets on these 100 errors. The results are shown
in table II. These results clearly show that the clustering
representative paths are significantly better than the other
two sets of paths.

TABLE II
Error Injection Coverage

Method Paths Error Injected Error Covered
Clustering 150 100 94.80%
Random 150 100 78.26%

Top Critical 150 100 32.00%

One characteristic the clustering algorithm provides,
that a typical set covering algorithm cannot, is the ability
for a user to weight features based on their assumed im-
portance. The interface for the user can be as simple as
selecting a subset of features which are believed to have
some higher levels of risk, and order them based on that
level. Features that are not selected are still considered
by the clustering algorithm, but emphasis is placed on the
selected ones.

Consider the Spectrum kernel example discussed in Sec-
tion A again. Suppose we believe that cell A, B have a
higher risk for causing unexpected effects. To force the

path selection to focus more on A, B, we can assign a
larger weight, said 2, to A and B while leaving the weight
for others as 1. Now consider the path p1 = ABACCEA
and p2 = CBACD again. For the case of single cell, p1 =
{A, B, C, E} and p2 = {A, B, C, D}. Hence, they share 3
cells A, B, C and because A, B are weighted by 2, the total
similarity contribution by this comparison is 2+2+1 = 5.
Again, for j = 2, p1 = {AB, BA, AC, CC, CE, EA},
and p2 = {CB, BA, AC, CD}. They share BA and AC.
Hence, their 2-Spectrum measure can be calculated as
2×2+2×1 = 5. Together, we have k(p1, p2) = 5+5 = 10.

To set up the experiment we selected 10% of the fea-
tures, and weighted them based on the weights shown in
figure 4(a). Some of the features we selected were sparse
features, features that do not appear very often in the de-
sign. We believe this would be realistic because features
that exhibit higher risk are usually used when absolutely
needed. Additionally, we selected featured that were not
originally covered by the clustering algorithm in the previ-
ous experiment to verify the effectiveness of this weighting.

Again, we randomly formed 100 timing errors. This
time each error is based on features that have unequal
probabilities to be selected. This probability distribution
is plotted in figure 4(b) and was obtained by modifying
the feature weight distribution of figure 4(a) with 10%
random noise. The idea is to simulate the situation that
the assumed risk levels associated with the features, as
reflected by the feature weights, are roughly correct but
not entirely correct for capturing the reality.

(a) Feature Weighting

(b) Probability Weighting

Fig. 4. Feature weighting in path selection and
probability weight in random error injection

In the results shown in table III we can observe a signif-

8C-3

785

icant improvement in coverage by the clustering represen-
tative paths. With further inspection on the features that
were covered, we can attribute this improvement to the
fact that all features which were not covered in the origi-
nal experiment were then covered when the weighting was
applied. This confirms the increase in effectiveness by us-
ing this weighting scheme. The error coverage for random
and top critical significantly decreased because emphasis
is not placed on selecting paths which contain features
that exhibit higher risk.

TABLE III
Weighted Error Injection Coverage

Method Paths Error Injected Error Covered
Clustering 150 100 98.48%
Random 150 100 56.66%

Top Critical 150 100 23.00%

VII. Conclusion

In this paper, we present a path selection methodology
to select paths for monitoring unexpected timing effects.
In the methodology, an ATPG based approach is applied
to identified functionally unsensitizable paths and remove
them from further consideration. A set of features to-
gether with a kernel function to interpret them, define
the hypothesized space of unexpected timing effects to be
explored. In this space, paths are selected for maximiz-
ing the coverage. Our path selection algorithm is based
on a kernel-based clustering algorithm. Similar paths are
grouped into a cluster where the most representative path
for the group is selected from most centroid point of the
cluster. The effectiveness of the path selection algorithm
is demonstrated based on simulation of assumed timing
errors on an industrial ASIC design.

Although the current work is based on a simple Spec-
trum kernel and straightforward cell features, as described
in [7], features and their associated kernels can be flexibly
defined. We emphasize the point that the kernel function
used in the clustering algorithm implicitly define the un-
expected timing effect space to be explored. Therefore,
the selected paths always depends on the kernel in use.
Putting a weight scheme on the features based on their
assumed risk, can be viewed as simply changing the ker-
nel computation, as illustrated in the previous section.

With the ability to flexibly define the set of features
and the kernel, we see that the proposed path selection
methodology does not intend to provide a golden answer
to the path selection problem. Instead, it provides a rather
generic framework that allows a user to conveniently in-
corporate his/her domain knowledge into the path selec-
tion process and select the optimal paths based on his/her
desired perspective.

It is important to note that selecting paths to monitor
unexpected timing effects and selecting paths to maximize

the diagnosis resolution for the unexpected timing effects,
said using the diagnosis framework proposed in [8], are
two different problems. This work attempts to solve the
first problem that concerns maximizing the coverage of
the effects. This objective can contradict to the objective
of maximizing diagnosis resolution. Our conjecture is that
for maximizing the coverage, we should select representa-
tive paths that are dissimilar to each other. For maximiz-
ing diagnosis resolution we should utilize paths that are
similar. Based on this conjecture, a representative path
from a cluster is used to monitor unexpected effects and
when such an effect is observed on the path, all paths in
the cluster can be used in diagnosing the cause. We plan
to investigate this proposal in future work.

References

[1] L. Milor, L. Yu, B. Liu ”Logic Product Speed Evaluation and
Forecasting During the Early Phases of Process Technology De-
velopment Using Ring Oscillator data,” Proc. International
Workshop on Statistical Metrology, 1997, pp. 20-23.

[2] D. Boning, S. Nassif, A. Gattiker, F. Lui, et al. ”Test Struc-
tures for Delay Variability” Proc. of the 85th ACM/IEEE In-
ternational Workshop on Timing Issues in the Specification and
Synthesis of Digital Systems, 2002, p.109.

[3] C. Cho, et al, ”Statistical Framework for Technology-Model-
Product Co-Design and Convergence,” Proc. DAC 07

[4] M. Bhushan, et al, ”Ring oscillator for CMOS process tuning
and variability control,” IEEE Trans. on Semiconductor Manu-
facturing, Vol. 19, pp. 10-18, 2006

[5] M. Ketchen, et al, ”High speed test structures for in-line pro-
cess monitoring and model calibration,” Proc. IEEE Inter.
Conf.Microelectronic Test Structures, 2005.

[6] R. Franch et al. On-chip Timing Uncertainty Measurements on
IBM Microprocessors Proc. ITC, 2007.

[7] P. Bastani, et al. Diagnosis of design-silicon timing mismatch
with feature encoding and importance ranking- the methodology
explained, ITC, in press, 2008.

[8] P. Bastani, et al. Statistical Diagnosis of Unmodeled Systematic
Timing Effects, DAC, in press, 2008.

[9] K. Killpack, C. Kashyap, E. Chiprout, ”Silicon Speedpath Mea-
surement and Feedback into EDA flows,” Proc. DAC, 2007.

[10] J. Liou, L. Wang, A. Krstic, K. Cheng, ”Experience in Critical
Path Selection For Deep Sub-Micron Delay Test and Timing
Validation,” ASPDAC, pp. 751-756, 2003.

[11] W. Qiu, X. Lu, J. Wang, Z. Li, D. Walker, W. Shi, ”A Statisti-
cal Falt Coverage Metric for Realistic Path Delay Faults,” VTS,
pp. 37-42, 2003.

[12] Y. Lin, F. Lu, K. Yang, K. Cheng, ”Constraint Extraction for
Pseudo-Functional Scan-based Delay Testing,” ASPDAC, pp.
166-171, 2005.

[13] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern
Analysis, Cambridge University Press 2004.

[14] J. Zeng, M. Abadir, J. Abraham, ”False Timing Path Identifi-
cation Using ATPG Techniques and Delay-Based Information,”
DAC, p. 562, 2002.

[15] J. C. Bezdek, C. Coray, R. Gunderson, J. Watson, ”Detection
and Characterization of Cluster Substructure I. Linear Struc-
ture: Fuzzy c-Lines,” SIAM Journal on Applied Mathematics,
vol. 40, no. 2, pp. 339-357, 1981.

[16] M. S. Aldenderfer, R. K. Blashfield, Cluster Analysis, Sage
Publications, 1984.

[17] M. Sharma, J. H. Patel, ”Finding a Small Set of Longest
Testable Paths that Cover Every Gate,” ITC, pp.974, 2002.

8C-3

786

