
A Study of Outlier Analysis Techniques for Delay Testing ∗

Sean H. Wu, Dragoljub (Gagi) Drmanac, Li-C. Wang
Department of ECE, UC-Santa Barbara

Abstract
This work provides a survey study of several outlier anal-

ysis techniques and compares their effectiveness in the con-
text of delay testing. Three different approaches are stud-
ied, an Euclidean-distance based algorithm, Random For-
est, and one-class Support Vector Machine (SVM), from
which more advanced methods are derived and analyzed.
We conclude that one-class SVM using a polynomial kernel
is most effective for detecting delay defects, while keeping
overkills minimized. The best models were successfully val-
idated and a feasible approach to delay testing using one-
class SVM is proposed.

1 Introduction
Testing is intended to distinguish between good and bad

chips. A golden reference for the good chips is needed in
order to decided what is bad. In delay testing, this golden
reference can be associated with a test clock. For example,
if a design is signed-off at 800MHz, one may desire to have
a test clock matching that frequency. This may involve tun-
ing the pattern set and/or the setting of test conditions, such
that known good chips are included and known bad chips
are screened out with an 800MHz clock setting.

As technology advances beyond 65nm, this seemingly
simple strategy may face several challenges. The first set of
challenges is associated with the assumption that the sign-
off frequency is the golden reference. The second set of
challenges concerns the screening of “small delay defects.”

For example, the authors in [1] show that timing mod-
els can be twice as pessimistic with respect to the actual
timing seen on silicon. It is well known that designs fol-
low the principle of conservatism. The sign-off frequency
is supposed to be the upper bound of the operational tim-
ing, which may or may not accurately predict the actual
timing on silicon. Then, as the sign-off frequency is used
as the golden reference, the effectiveness of delay testing
inevitably depends on the accuracy of timing models and
timing analysis tools. As pointed out by the authors in [2],
design-silicon timing correlation has become a challenging
problem in the nanometer era. For example, it is unrealis-

∗This work is supported in part by National Science Foundation, Grant
No. 0541192 and Semiconductor Research Corporation contract No.
2007-TJ-1585

tic to expect a timing analysis tool to correctly predict ac-
tual speed-limiting paths seen on microprocessor chips [3].
If it is difficult to guarantee prediction accuracy from tim-
ing models and timing analysis, one may desire a delay test
methodology that is independent of timing models and anal-
ysis.

of

 c
hi

ps

Max delay of a chip

STA
sign-off
timing

Mass production
test clock

Figure 1. Selecting a test clock is not trivial

If one does not take the sign-off frequency for granted,
deciding a golden reference becomes an open-ended issue.
Figure 1 illustrates the situation. By checking the max-
delay distribution on a collection of sample chips (without
knowing which are good or bad), it may not be intuitive to
decide an optimal test clock. In addition, this optimization
depends on one’s test-escape and over-kill requirements.

The burden of deciding a golden reference can be allevi-
ated if one is allowed to have known-good and known-bad
sample dies. Then, the problem becomes finding an optimal
boundary to separate the two sets. This can be seen as a Bi-
nary Classification problem and the authors in [4] discuss
algorithms for its optimization.

Suppose we do not want to depend on the timing models
and analysis, nor do we have known-good and known-bad
dies on hand. We ask the following question: Is Figure 1
the best we can do to decide a golden reference, i.e. does
it make the best sense to determine the golden test clock
using max-delay distribution? This question brings us to
the second set of challenges in delay testing, i.e. capturing
small delay defects.

What is a small delay defect? Intuitively, a small de-
lay defect causes a small delay increase somewhere in the
chip. If we take the perspective of Figure 1, for captur-
ing small delay defects, there are two approaches we may
follow. The first is adjusting the test clock, i.e. using a
tighter test clock. The second is using a set of patterns that
sensitize long-delay paths. While both approaches can be

Paper 1.1
1-4244-4203-0/08/$20.00 c© 2008 IEEE

INTERNATIONAL TEST CONFERENCE 1

feasibly implemented in practice, their perspectives of cap-
turing the small delay defects may become questionable if
one takes statistical variations into account. For example,
they do not directly answer the following questions: Should
random variations be considered as small delay defects? If
the magnitude of a small delay defect is smaller than the
magnitude of variations, do we still care about capturing it?
If we do, what method should we use?

450

475

500

525

550

575

600

1 2 3 4 5
Test Pattern

D
el

ay
 (

p
se

c)

Test Clock = 600ps

Chip A

Chip B

Chip C

Figure 2. C behaves differently from A and B

Consider Figure 2 where the timing behavior of three
chips are shown. Five patterns are applied and their de-
lays are plotted for each chip. Suppose the test clock is set
at 600ps. From the perspective of Figure 1, all three would
be classified as good chips. If we compare the behavior be-
tween A and C, we observe that they follow a similar trend.
It may be reasonable to assume that the delay differences
seen between A and C are due to systematic process varia-
tion. On the other hand, we see that B behaves differently
from A and C, i.e. the delays of pattern 2 and 5 seem to
be excessively long compared to the trend observed with A
and C. We may conjecture that B has “small delay defects”
because its behavior does not follow the normal trend.

1.1 Normal trend and outliers

Given a set of sample chips, suppose we can somehow
build a model to capture the “normal trend” among these
chips. Then, we can use this model to screen out the out-
liers from the set. Moreover, the model can be used to dif-
ferentiate between normal chips and outliers on a new set of
samples. If we consider a chip that follows the normal trend
as good, and a chip that does not follow the normal trend as
bad, then we see that the problem discussed above for de-
ciding a golden reference becomes the problem of deciding
a boundary for the model.

We note that depending on the characteristics of the sam-
ple chips, a “normal” chip may not be good. For example,
suppose a significant portion of the samples are all defec-
tive in a similar fashion. Then, what is “normal” given the
samples can mean abnormal or defective. However, if this
is indeed the case, then there must be something fundamen-
tally wrong, for example, a systematic error may exits in the
design. If this is the case, then such a problem needs to be
fixed before applying outlier analysis.

In this work, we assume that it is safe to call a chip good
if it follows the normal trend. Then, we treat delay testing
as the process of identifying “outliers.” This perspective has

two key advantages: (1) The normality is entirely defined by
the behavior of the sample chips and hence, defining what
is good is totally independent of pre-silicon timing models
and analysis. (2) There is no need to have known-good and
known-bad dies in advance.

In fact, both Figure 1 and Figure 2 can be viewed as
forms of outlier analysis. In Figure 1, the analysis is one-
dimensional. Each chip’s behavior is characterized by its
max delay. The normal trend is defined by a test clock,
where all chips on the left of the cut-off delay are considered
normal. Chips on the tail of the distribution are considered
outliers (bad). In Figure 2, the analysis is five-dimensional
based on the delays of five patterns. A trend is defined by
comparing the relative delays of these patterns and by com-
paring the five delays across all chips.

In this paper, we take the perspective of Figure 2 and
consider delay testing as a multi-dimensional outlier analy-
sis problem. There are three objectives for this work:

• Conducting a comprehensive study on state-of-the-art
outlier analysis techniques.

• Based on the study, deriving the best outlier analysis
algorithm for delay testing.

• Demonstrating that small delay defects can be effec-
tively captured by an outlier analysis approach, even
in the presence of statistical process variations.

With these objectives in mind, the rest of the paper is or-
ganized as follows. Section 2 discusses related works using
outlier analysis tecniques in testing. Section 3 introduces
the four basic components that constitutes an outlier analy-
sis approach. Section 4 describes three outlier analysis ap-
proaches. Section 5 explains the experimental setup and
Section 6 shows experimental results comparing the three
baseline approaches. Section 7 suggests several improve-
ments to the best baseline approach, the one-class Support
Vector Machine (SVM) [25] and concludes its overall supe-
riority. Section 8 presents experimental results that validate
the SVM one-class model. Section 9 concludes the paper.

2 Related Work

Outlier analysis has been studied extensively in Iddq
testing because of the difficulty in setting a reliable thresh-
old to separate the intermixed defective and defect-free be-
havior. The authors in [5] and [6] analyze all measure-
ments collectively as a current signature instead of com-
paring each measurement to a set threshold. In [7], the au-
thors propose using the current ratio between one sample’s
maximum and minimum measurements to screen outliers.
Utilizing multiple tests or metrics for screening outliers are
presented in [5] [8] [9]. Similar methods are also applied in
analog testing [20] [21]. Various works propose using the
residual between the measured and estimated values to re-
duce the variance seen in the dataset [12] [15] [16]. Outliers

Paper 1.1 INTERNATIONAL TEST CONFERENCE 2

become more obvious when the variance of most data is re-
duced. All the above works try to solve an outlier analysis
problem by finding the best set of features to use. With a
better set of features (a better definition of axises), the sam-
ple data can be plotted in such a way that outliers are more
easily identified. As we will discuss in Section 3, feature
generation is one of the four components that constitute an
outlier analysis approach. In general, one should not be re-
stricted to using a small number of features.

In [14], clustering technique is applied on Iddq data.
Different methods of determining a cluster boundary are
discussed in [11][10]. These works focus on how to define a
proper boundary for normality. Statistical analysis on Iddq
test data has proven benefits and has been put into manu-
facturing test flow as described in [17][19]. The authors in
[22] briefly discuss the use of Random Forests for outlier
analysis in delay testing. Some encouraging initial results
are shown but it remains unclear if Random Forests is the
best approach to perform outlier analysis

3 Overview of Outlier Analysis
There are four major components in an outlier analysis

approach. They are (1) feature generation, (2) similarity
measure, (3) defining the boundary of the normality space,
and (4) model validation or confidence estimation. Figure 3
illustrates these four components.

Feature
Generation

Define
Similarity

Model Construction
Define Norm Space

Model
Validation

Outlier Analysis

Data Result

Figure 3. 4 components in an outlier analysis approach

Fe
at

ur
e

y Boundary to define
the normal space

outlier

Feature x

outlier or not?

outlier

(a) Distance-based

Fe
at

ur
e

y Boundary to define
the normal space

outlier

Feature x

outlier

(b) Direction-based

Figure 4. Illustration of outlier analysis
Figure 4 shows two examples to illustrate the first three

components. Both examples use only two features, x and
y. For instance, one may view these as delay measurements
on two patterns. In a more complicated situation, x and y
each can be a linear combination of delay measurements on
a subset of patterns. The point here is that the behavior of
each sample is characterized by a two-dimensional vector
(x,y) that can be plotted as shown in the figures. Deciding
what features to use in the outlier analysis is called feature
generation or feature selection.

In Figure 4(a), a boundary of the normality space is
drawn. Samples (dots) inside this boundary are considered

as normal. Samples outside are outliers. The boundary be-
comes clearer as more samples cluster inside, while outliers
spread outside. However, notice that this intuition is implic-
itly built on the notion of Euclidean distance. When we see
that two samples are close, what we are really saying is that
their Euclidean distance measure is small. If we treat such
a distance measure as a similarity measure, we can also say
that they are similar to each other.

Euclidean distance is one of the many ways to measure
similarity between two samples. Figure 4(b) shows a differ-
ent measure based on the angle between two vectors. In this
figure, two samples are similar if the angle between the two
vectors representing them is smaller (usually measured by
the cosine function). Notice that the boundary of the nor-
mality space is no longer a closed space. In this case, it is
a spread over an angle. More interestingly, observe that the
upper-right sample is included in the normality space. If
we use the Euclidean distance measure, that sample would
have been treated as an outlier.

To illustrate this point further, consider the follow-
ing example. Suppose we have three samples char-
acterized by three 3-dimensional vectors v1 = (3,2,3),
v2 = (3,0,3) and v3 = (1,0,1). Suppose the simi-
larity is measured by the Euclidean distance d(), then
we have d(v1,v2) =

√
(3−3)2 +(2−0)2 +(3−3)2 =

2, d(v2,v3) =
√

(3−1)2 +(0−0)2 +(3−1)2 =
√

8 =
2.8284, and d(v1,v3) =

√
(3−1)2 +(2−0)2 +(3−1)2 =√

12 = 3.4641. We see that v1, v2 are closer (shorter in
distance) than v1,v3 or v2,v3. A boundary can be drawn
by setting the threshold at 2 such that v1,v2 are within the
boundary and v3 becomes an outlier.

On the other hand, suppose we use a different function,
such as the cosine function cos(va,vb) = 〈va,vb〉

||va||||vb|| (where

〈va,vb〉 is the dot product of the two vectors). Then,
we have cos(v1,v2) = 3×3+2×0+3×3√

32+22+32
√

32+02+32
= 18

19.8997 =

0.9045, cos(v2,v3) = 3×1+0×0+3×1√
32+02+32

√
12+02+12

= 6
6 = 1, and

cos(v1,v3) = 3×1+2×0+3×1√
32+22+32

√
12+02+12

= 6
6.63325 = 0.9045. In

this case, we see that v2,v3 are more similar (larger cosine
value) than v1,v2 or v1,v3. Hence, a boundary can be drawn
to make v1 an outlier.

It should be apparent now that how the similarity is mea-
sured between a pair of samples can change how the bound-
ary is drawn. In fact, for a modern outlier analysis algorithm
such as one-class SVM to work, all the information it needs
is in the similarity matrix that records the similarity measure
between every pair of samples. The interesting point here
is that, the absolute values in a sample vector are not im-
portant. What is important is its relative similarity to other
samples, defined by a similarity measure function. Such
a function therefore defines the metric space for an outlier
analysis algorithm to work on.

Paper 1.1 INTERNATIONAL TEST CONFERENCE 3

Similarity
function

Metric
space

Similarity
Matrix

(implicitly
exist)

Outlier
measure
algorithm threshold

ut
lie

r
m

ea
su

re

exist)

O
u

Sample indices

Figure 5. Typical working principles of a modern out-
lier analysis algorithm

Figure 5 summarizes the working principles of a modern
outlier analysis algorithm. A similarity function defines a
metric space for the algorithm to work on. Once such a met-
ric space is defined, a similarity matrix can be computed.
This matrix may implicitly exist in the implementation of
an algorithm to save memory, i.e. when the similarity value
between a pair of samples is required, it is computed on the
fly. The algorithm utilizes information contained in the sim-
ilarity matrix to compute an outlier measure for each sam-
ple. These measures are then plotted and a threshold can be
drawn to decide the outliers. For example, in Figure 4(a)
the outlier measure can be the distance of a sample point to
the center of the normality region defined by the boundary.

3.1 Curse of dimensionality and feature selection

The Curse of dimensionality is a well known concept
in statistical and machine learning research. Basically, it
says that as the the number of dimensions in a problem in-
creases, the complexity of the problem can grow exponen-
tially. Since the dimension of a problem corresponded to
the number of features in use, it inspired applying Princi-
pal Component Analysis (PCA) to select important features
before utilizing a learning algorithm. PCA produces new
and uncorrelated features (Principal Components) from the
original set of features. Usually, by selecting a rather small
number of principal components, one can reasonably ap-
proximate the statistics contained in the dataset represented
by the original set of features. Because the number of di-
mension is reduced, it is expected that a learning algorithm
can learn more effectively from the transformed dataset rep-
resented by the principal components.

In delay testing, the number of features is the number of
patterns. If one uses 10K patterns, the number of dimen-
sions is 10K. This requires an outlier analysis algorithm to
work on a 10K-dimensional space. Because of this large
number, the authors in [22] discuss ways to select impor-
tant features using Random Forests.

While it is intuitive to conjecture that selecting impor-
tant features can be a crucial step in outlier analysis for de-
lay testing due to the large dimensionality, in Section 7 we
will demonstrate that, if a proper similarity function is used
with a right outlier measure algorithm, large dimensionality
becomes a non-issue. This is an important finding of this
work, i.e. the curse of dimensionality is not an important
issue in outlier analysis for delay testing. This means that
one can always use a large number of patterns to perform
the analysis.

3.2 Model validation
An outlier analysis algorithm builds a model to represent

the normality space and then uses that model to compute an
outlier measure value for every sample. This is an unsuper-
vised learning process because the algorithm learns what
the normal trend is from a set of sample and then uses that
knowledge to classify the samples themselves. Once the
learned model is built, it is desired to estimate the confi-
dence of the model by applying it to a new set of samples.
Theoretical estimation of this confidence has been a very
difficult problem. In practice, the most commonly-used ap-
proach is k-fold cross validation.

In k-fold validation, k−1
k fraction of samples are used to

build the model and the remaining 1
k samples are used for

validation for each run. If the results from k trials are mostly
consistent, then one has a high confidence in the model.
Otherwise, one does not. Typically, k = 3 or 5.

4 Outlier Analysis Techniques

Feature selection PCA, Random Forests (RF)
Similarity function Euclidean, RF, kernel functions*
Outlier measure/ distance-based, multi-dim. scaling*
Model building 1-class SVM
*to be discussed later

The table above summarizes the techniques studied in
this work. In this section, we first analyze three baseline
approaches as explained below.

PCA+Euclidean distance The first approach uses PCA to
reduce data dimensions, and Euclidean distance mea-
sure to define the metric space. Then, the outlier mea-
sure is calculated as the distance to the sample mean,
i.e. for every sample its distance to the mean sample
vector is calculated.

Random Forests (RF) The second approach uses RF to
select important features and construct a proximity ma-
trix [22]. Then, multi-dimensional scaling is used to
calculate the outlier measure for each sample.

1-class SVM The third approach does not include feature
selection. It uses a kernel function to measure simi-
larity and the 1-class SVM algorithm to build a hyper-
spherical model in a high dimensional space. The out-
lier measure is calculated based on this model.

Since PCA, [23], is a well known technique, we skip fur-
ther discussion of the first approach. Next we will explain
the basic principles of Random Forests and 1-class SVM
with kernel functions.

4.1 Random Forests

Random Forests (RF) was introduced by Breiman in
2001 based on decision tree theory [29]. RF was introduced
as a supervised learning approach where its most popular

Paper 1.1 INTERNATIONAL TEST CONFERENCE 4

use was in Binary Classification [22]. A forest is a col-
lection of decision trees where each tree is an over-fitting
model for a randomly-selected subset (of equal size) of sam-
ples. RF prediction is based on voting from all trees.

To use RF for unsupervised learning, such as outlier
analysis, the first step is to convert the problem into a bi-
nary classification problem. Given the set A of samples to
be analyzed, the first step is to produce a synthetic set Syn of
samples. By labeling the original samples in A as +1 class
and the synthetic samples in Syn as −1 class, together they
form the dataset for binary classification. RF is applied on
this combined dataset to build a model Mr f . Figure 6 illus-
trates this notion. Mr f tries to model the boundary between

Original
Synthetic

Figure 6. Building a model Mr f to separate the original
and the synthetic samples

the space where all original sample points reside and the
space where no original samples reside. The second space
is represented by the synthetic samples that are produced
by randomly perturbing the values of each feature across all
samples in the original dataset.

Suppose the original dataset is represented as a ma-
trix A = |ai j|i=1...n, j=1...k where there are n chip samples
and k patterns. The synthetic dataset is another ma-
trix B = |bi j|i=1...n, j=1...k. Each column b1 j,b2 j, . . . ,bn j

is sampled at random from the univariate distribution of
{a1 j,a2 j, . . . ,an j}. Basically, the univariate distribution of
each pattern feature (pattern delays) across all chips in the
synthetic set is equivalent to that in the original dataset.
However, the correlations, presented in the original dataset,
among the pattern delays of each chip are entirely destroyed
in the synthetic dataset. Breiman [29] shows that if the
model Mr f from this synthetic binary classification dataset
can successfully differentiate between the original and syn-
thetic samples, then Mr f is a good model to measure a prox-
imity between pairs of samples.

Refer to Figure 5 and recall that an outlier analysis algo-
rithm starts from defining a similarity function. The model
Mr f is for that purpose. Suppose the model consists of 100
trees T1, . . . ,T100. The proximity (or similarity) prox() be-
tween a pair of (original) samples is measured by counting
the number of trees that use the same paths to classify both
samples. Suppose this number is 60, i.e. these 60 trees see
the two samples as exactly the same. Then, the proximity
between the two samples is 0.6.

Once the proximity matrix is constructed, a multi-
dimensional scaling technique can be used to convert this

matrix into a single dimensional outlier measure. For each
sample xi, we first calculate an average proximity, P̄ as
shown in equation (1) below, where X is the set of all sam-
ples. Let “nsample” be the number of samples in X . In
equation (2), if xi is dissimilar to most of the samples, the
P̄(xi) will be small, thus making OMraw(xi) large. Based
on all values of OMraw(xi) from all samples, we find the
median Median and also calculate their standard deviation
(STD). The MAD is the Median Absolute Deviation de-
fined as 0.6745 ∗ STD. The outlier measure for sample xi,
OM(xi), is then computed as equation (3).

P̄(xi) = ∑
∀k �=i

prox2(xi,xk),∀xk ∈ X (1)

OMraw(xi) = nsample/P̄(xi),∀xi ∈ X (2)

OM(xi) =
OMraw(xi)−Median(OMraw(x))

MAD(OMraw(x))
(3)

This process scales the high-dimensional proximity ma-
trix into a single dimensional outlier measure. If OM(xi)
exceeds a selected threshold, xi is classified as an outlier.

4.2 Support Vector Machine

Support Vector Machine (SVM) represents a family of
algorithms that can be used with a variety of kernel func-
tions [26]. Three types of SVM are available: regression,
classification, and one-class. The one-class SVM is applied
in this work, while the work in [4] uses the binary classi-
fication algorithm. A kernel function defines the similarity
measure between pairs of samples. The most commonly-
used kernels are the Linear (dot product) and Gaussian ker-
nels.

Linear : k(x,z) = 〈x,z〉 = x1z1 + · · ·+ xkzk (4)

Gaussian : k(x,z) = exp(−γ||x− z||2) (5)

In this work, we use the ν-SVM one class algorithm pro-
posed in [25]. The parameter ν denotes an upper bound
on the fraction of samples that should be classified as out-
liers. The algorithm then computes the “tightest” hyper-
sphere that contains all sample points following a similar
trend, constrained by the value ν. The hypersphere is con-
structed in the feature space defined by the original set of
features and the kernel function. The hypersphere model is
of the form:

M1svm(x) = ∑
∀i

αik(xi,x) (6)

where αi characterizes the importance of sample xi in build-
ing the model,and M1svm(x) is the outlier measure for sam-
ple x. Because k(xi,x) measures the similarity between x
and a given sample xi, we see that the model is calculating a
weighted average of similarities between the sample x and
all samples. These weights are decided by the importance
of the samples. In the model, a sample xi whose αi �= 0, is
called a support vector (SV). The number of support vectors

Paper 1.1 INTERNATIONAL TEST CONFERENCE 5

impact the shape of the model in the original feature space.
For example, Figure 7 shows two example models, one with
only 2 SVs and the other with many. Observe that the shape
of the model in the right figure is more irregular than the
shape of the model in the left. The intuition is simple: If we
want to define a region that is more irregular, we need more
(SV) points.

Feature 1

F
ea

tu
re

 2

Model

Support
vectors

(a) Low complexity
Feature 1

F
ea

tu
re

 2

Model

Support vector

(b) high complexity

Figure 7. SVM outlier analysis illustration

To decide if a sample is an outlier, M1svm(x) is compared
to a constant ρ. In Figure 7, the SVs decide the shape of the
model while ρ determines its size.

5 Experimental Setup
To compare the three baseline approaches, we conducted

controlled experiments with simulations. In simulation, we
produced two sets of circuit samples, the good (or golden)
set and the defect-injected set, based on an industrial cus-
tom block design. The good samples were generated using
statistical Monte Carlo (MC) simulation [4, 22], where the
delay values of each sample were statistically drawn from a
statistical cell-based timing library. Hence, each sample had
a fixed but unique delay configuration. Statistical process
variation was modeled in the library and spatial correlation
was taken into account in the MC simulation.

A good sample was converted into a defect-injected sam-
ple by including a random-sized randomly-located delay
defect. The size was drawn from an exponential distribution
with the mean selected to be relatively small with respect to
the max delay of the circuit. One thing to note is that the
maximum delay of a defect-injected sample can be smaller
than the maximum delay of a good sample, because of the
statistical variations considered in the simulation. More-
over, there may not exist a pattern to excite and observe the
defect in a defect-injected sample. In our experiments, we
ignore these issues and simply label a defect-injected sam-
ple as “defect-injected.”

It is important to note that by doing so, we do not expect
any method to perfectly identify all defect-injected samples.
Hence, the experiments should focus on finding the most
defect-injected samples, while limiting the number of over-
kills. We are interested in knowing which of the three ap-
proaches can identify the largest number of defect-injected
samples, while constrained to zero over-kills.

A 15-detect transition fault pattern set with 2165 patterns
was used. Each pattern was evaluated against 10 test clocks,
from slow (the 10th clock) to fast (the 1st clock), where the

first failing clock was recorded. If no failure was observed,
the recorded number is 0. Hence, the number of features
was 2165 and each feature value was an integer between 0
and 10. We intentionally used the 15-detect set so that the
number of dimensions in the outlier analysis problem was
large enough, to test the effectiveness of each approach in
avoiding the curse of dimensionality.

700

400

500

600

ou
nt

Traditional Delay

200

300

Ch
ip
Co

ad o a e ay
Test Clock

0

100

500 600 700 800 900 1000 1100 1200 1300

M D l ()Max Delay (ps)

Figure 8. Max delay distribution of all samples

Figure 8 plots the max delay distribution based on all
samples, good (golden) and defect-injected. We note that
good samples mostly range between 650-950 ps. Defect-
injected samples mostly range between 825-1200 ps. How-
ever, observe that from the distribution itself, it is hard to
see that. The only obvious thing we can do is to cut off
the tail of the distribution, i.e. establish a threshold as tra-
ditional delay test clock. Therefore, before running outlier
analysis, obvious outliers have already been removed. After
removing all samples on the (right) tail, there are 991 good
samples, and 591 defect-injected samples left. These 1582
samples are the sent to the outlier analysis.

6 Baseline Experiments

We first study the performance of PCA + Euclidean dis-
tance. Based on the dataset with 2165 features, we ap-
ply PCA to select 30 and 852 principal components (PCs),
which explain 75% and 99.99% of total variance in the orig-
inal dataset, respectively. The two sets of PCs transform the
original dataset into two new datasets. Then, the Euclidean
distance based method described earlier is applied to each
individually. The outlier measures for the two datasets are
plotted in Figures 9 and 10. The y-axis is the scale of
the outlier measure and x-axis is the circuit sample indices.
Good (golden) samples are grouped to the left while defect-
injected samples are grouped to the right.

In Figure 9 most samples have outlier measures ranging
between 500 and 4000, with defect-injected samples hav-
ing slightly higher outlier measures. The lack of vertical
separation between the golden and defect-injected samples
indicates that the outlier method is not effective. Even in
the high outlier measure region, between 4000 and 12000,
both golden and defect-injected samples are present. Hence,
there is no way to draw a threshold line to screen out defect-
injected samples, without involving over-kill.

Figure 10 shows a slightly improved result with more

Paper 1.1 INTERNATIONAL TEST CONFERENCE 6

Figure 9. Result using top 30 principal components

Figure 10. Result using top 852 principal components

PCs but the basic point stated above remains. This tells us
that the Euclidean distance approach is not fundamentally
feasible for outlier analysis on the dataset, regardless of the
number of PCs.

6.1 Random Forests

Note that RF selects the important features during the
construction of its binary classifier model based on the syn-
thetic dataset. The RF tool we use, the librf package [30],
calculates the optimal number of selected important fea-
tures. Hence, there is no need to show different results with
different numbers of features as that in the PCA experiment.
Outlier measures for all samples are plotted in Figure 11.

Figure 11. Random Forests outlier measure

Figure 11 shows better separation between golden and
defect-injected samples than previous results. Most golden
samples are tightly packed with outlier measures ranging
between 0 and 100. Defect-injected samples spread out
with outlier measures ranging from 0 to 1100. This is a
desirable result because it shows that RF outlier analysis
can identify some defect-injected samples as outliers, with-
out over-killing the golden samples. In Figure 11, a hori-

zontal threshold shown at 200 separates all golden circuits
from a portion of the defect-injected ones. This threshold
yields zero overkill and captures 32 defect-injected samples.
While this result is more encouraging than before, it is far
from satisfactory.

6.2 One-class ν-SVM

One fundamental issue in the previous two approaches
is that a user needs to decide a threshold to screen outliers
after the outlier measures are plotted. Such a decision can
become arbitrary without further scientific evidence to sup-
port the decision.

The one-class SVM algorithm, ν-SVM, removes this
concern by computing the threshold ρ automatically during
the model construction process [25]. The software package
we used is an modification of [27]. However, it requires
the user to enter the value of a parameter ν that is the upper
bound on the number of outliers identified by the model. In
a way, the burden of choosing the threshold ρ is shifted to
the burden on deciding ν.

Because ν is just an upper bound, it is much easier to
decide its value. For example, if one expects a yield of 60%
from a process, to be safe 0.5 can be used as ν. This means
that in the worst case, we do not expect more than 50% of
the samples under analysis to be classified as bad. We see
that ν matches well with the estimate of yield. Since usually
one has some idea about the yield, selecting a reasonable
value for ν should be easier than selecting the threshold.

Figure 12. SVM with Gaussian Kernal

Figure 12 shows the result based on the Gaussian ker-
nel. Note that the threshold line is an output of the ν-SVM
and hence, is not decided after plotting the outlier measures.
In particular, the algorithm scales the measures so that the
threshold boundary stays at 0. Notice that this figure shows
far better separation between the golden and defect-injected
samples than that in the previous three plots. However, we
note that because some golden samples have outlier mea-
sures similar to defect-injected samples, overkills occur.

If one desires, the threshold value ρ computed by the ν-
SVM can be adjusted to achieve lower overkills or increases
captures. Figure 13 presents the capture-vs-overkill trade-
off based on the outlier measures shown in Figure 12. The
x-axis shows the percentage of correctly classified golden

Paper 1.1 INTERNATIONAL TEST CONFERENCE 7

600

700

ed

400

500

600
le
s
Ca

pt
ur
e

200

300

ct
iv
e
Sa
m
pl

0

100

20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%#
D
ef
ec

G d S l C l Cl ifi dGood Samples Correctly Classified

Figure 13. Capture vs. overkill tradeoff

samples, and the y-axis shows how many defect-injected
samples are captured at that percentage. The curve shows
that the Gaussian SVM model can capture most of the
defect-injected samples when correctly classifying 90% of
the golden samples. However when approaching a golden
classification of 95%, the defect capture number plummets.
At 100% golden classification, the model only screens out
37 defect-injected samples as outliers.

Figure 14. SVM with Linear Kernal

Figure 14 shows the result when using Linear kernel. A
clear improvement can be seen in the spread of outlier mea-
sures for the defect-injected samples. They range between
0.4 and -0.8, while all golden measures are tightly packed
around 0.4. It outperforms SVM with the Gaussian kernal,
and is capable of capturing 194 defect-injected samples that
fall below the 0 threshold, with no overkills.

6.3 Summary
Three baseline outlier analysis approaches are compared

each with a unique definition of similarity measure. From
the results presented above, one-class ν-SVM using the
Linear kernal is the most effective method, which keeps
the golden samples tightly packed while spreading out the
defect-injected ones. Table 1 summarizes the results for the
three approaches with a slightly different perspective than
the outlier measure plots. For zero overkill the best model
is given by SVM using the Linear kernal. However, if 5%
overkill is acceptable, then using the Gaussian kernel or
the Linear kernel become more comparable, both capturing
more than 90% of the defect-injected samples.

7 Improvement to ν-SVM
We take the best method from the previous section, the

ν-SVM with Linear kernel, and in this section we try to

% Defective Detected Overkill %
0% (0/591) 0%Euclidean Distance + PCA

37.20% (220/591) 5%
5.41% (32/591) 0%Random Forrest

33.50% (198/591) 5%
6.26% (37/591) 0%SVM + Gaussian

91.54% (541/591) 5%
32.83% (194/591) 0%SVM + Linear
93.40% (552/591) 5%

Table 1. Comparison of various techniques

improve its performance by following three strategies: (1)
We replace Linear kernel with a more advanced kernel, the
Polynomial kernel. (2) We reduce the dimension of the
problem by applying PCA first. (3) We select important fea-
tures using RF before running the SVM. We will conclude
with experimental results that only the first strategy makes
sense. This demonstrates that the dimensionality of the
problem is unimportant for ν-SVM. Using the right kernel
function is a consideration for improving its performance.
The Polynomial kernel we use looks like the following:

k(x,z) = (
〈x,z〉

||x||||z|| + 1)d (7)

Note that 〈x,z〉
||x||||z|| is the cosine function described earlier.

We use 3-fold cross validation method discussed earlier to
select the value for d. In the experiments below, d = 2.
Figure 15 shows the result. Again, the threshold line was
chosen by the SVM, not arbitrarily decided.

Figure 15. SVM with polynomial kernal

The model successfully identifies 441 defect-injected
samples with zero overkill. This significantly improves the
result from using the Linear kernel where only 194 defect-
injected samples were screened as outliers.

7.1 PCA and RF dimensionality reduction

A common approach in support vector analysis is to use
PCA to transform a given dataset into a lower-dimensional
dataset before applying SVM [28]. Figure 16 shows the re-
sult of applying one-class SVM on the reduced data set us-
ing 30 PCs. Immediately it is clear that PCA has destroyed
all separation between golden and defect-injected samples.
It is impossible to differentiate the two classes of samples.

RF analysis was shown to be effective in selecting the
important features in delay test applications [22]. By apply-

Paper 1.1 INTERNATIONAL TEST CONFERENCE 8

Figure 16. PCA + SVM + Linear kernel

Figure 17. RF + SVM

ing RF on the synthetic dataset, it selected 286 important
features in building the 100-tree forest model. Based on
these 286 features, we constructed a new dataset by remov-
ing all other features. Then SVM is applied on the reduced
dataset. Figure 17 shows the result. Based on the given
threshold at 0, 160 defect-injected samples are identified as
outliers with zero overkill. Comparing this number to the
original number 194, we see that selecting importance fea-
tures actually hurts the performance of the one-class SVM.

Results in this section clearly demonstrate that, with the
ν-SVM outlier analysis approach, using a proper kernel
function is more important than reducing the dimensionality
of the problem. In fact, both PCA and RF, dimension reduc-
tion hurts SVM’s performance. This conclusion is opposite
to that presented in [28]. We conjecture that this is due to
the unique nature of our problem, i.e. in delay testing, the
behavior of an individual pattern on a chip can mean a lot
(in statistical analysis, individual behavior is usually not im-
portant). Hence, when individual features are replaced with
PCs (which are linear combinations of the original features),
behavior of an individual feature can be masked. We note
that, a similar situation was discussed in [4] before, where
a statistical feature selection approach is shown to be inef-
fective for pattern selection in the context of delay test set
optimization, due to the masking of individual behavior on
important patterns.

8 Polynomial Kernel Model Validation

From a delay testing standpoint, the best outlier method
to use is the one-class SVM model generated with the poly-
nomial kernel. To make sure this model is feasible for

1600

1000

1200

1400

un
t

400

600

800

Ch
ip
Co

u

Golden

Defect
Injected

0

200

65
0

67
5

70
0

72
5

75
0

77
5

80
0

82
5

85
0

87
5

90
0

92
5

95
0

97
5

10
00

10
25

10
50

10
75

11
00

11
25

11
50

M
or
e

Max Delay (ps)

Figure 18. Max delay histogram of validation dataset

large scale classification a validation dataset was analyzed.
The validation set contains 4961 golden samples, and 2852
defect-injected samples. The max delay distributions of the
validation set can be seen in Figure 18, showing a clear
overlap between golden and defect-injected samples.

In order to show the flexibility of one-class SVM, the
original dataset was used to produce three new datasets,
each with a different golden-to-defective sample ratio.
These three datasets are used to train one-class SVM to
model. The intent is to demonstrate that one-class SVM and
the polynomial kernel train generalized models independent
of the exact yield.

Figure 19. Validation result with the large dataset us-
ing the SVM model built on the dataset containing 90%
golden and 10% defect-injected samples

Figure 19 shows the validation result from the model
trained with 90% golden and 10% defect-injected sam-
ples. A zero threshold successfully separates golden sam-
ples from most of the defect-injected ones.

Figure 20. Similar validation result (training with
63% golden, 37% defect-injected)

Paper 1.1 INTERNATIONAL TEST CONFERENCE 9

Figure 20 shows a similar result based on training with
63% defect-injected and 37% golden samples. Figure 21
shows the validation result using the model trained with
50% golden and 50% defective. Table 2 summarizes the
validation results from all three models. It is interesting to
note that as more good samples are used to build the model,
the model boundary for good is tighter. As a result, when
using the model to screen the large dataset, it is less likely
that some good samples are classified as bad. In general,
the three models perform similarly and the performance of
SVM outlier analysis is mostly independent of the yield in
the original training dataset.

Figure 21. Similar validation result (training with
50% golden and 50% defect-injected)

Model Training Set # Defect-injected samples # overkills
(% Golden / % Defect-injected) Detected

90/10 2292 4
63/37 2182 1
50/50 2043 0

Table 2. Comparison of using the three SVM models

9 Conclusion
In this work, we provide an overview of various out-

lier analysis techniques and compare their performance in
the delay test application. As the difficulty of establishing
a golden reference in delay testing increases due to mod-
eling uncertainty and the presence of small delay defects,
the outlier analysis approach becomes an attractive alter-
native. Utilizing outlier analysis avoids the dependency
on the accuracy of pre-silicon timing models and analy-
sis as well as the dependency on having known-good and
known bad dies. After studying a variety of techniques, we
conclude that one-class SVM with a properly chosen ker-
nel function is the best approach, which is able to screen
out a majority of small-defect-injected chips without incur-
ring any overkill. One-Class SVM’s ability to minimize
overkills while detecting the majority of defective samples
under varying training conditions makes it an ideal candi-
date for applications in delay testing.

References
[1] P. Bastani et, al., ”‘Analyzing the risk of timing modeling based on

path delay tests”’ ITC, 2007

[2] Li-C. Wang, Pouria Bastani, Magdy S. Abadir, ”Design-silicon tim-
ing correlation — a data mining perspective,” In DAC 2007.

[3] K. Killpack, et al,” ”Analysis of Causation of Speed Failures in a
Microprocessor: A Case Study,” To appear in IEEE Design & Test
Special Issue on Silicon Debug and Diagnosis 2008.

[4] B. Lee, Li-C. Wang, and M. Abadir, ”‘Issues on Test Optimization
with Known Good Dies and Known Defective Dies - A Statistical
Perspective”’, ITC, 2006

[5] A. Gattiker, W. Maly, ”‘Current Signature: Application”’, ITC, 1997,
pp. 156-165.

[6] P. Nigh and A. Gattiker, ”‘Random and Systematic Defect Analysis
Using Iddq Signature Analysis for Understand Fails and Guiding Test
Decisions”’, ITC, 2004

[7] P. Maxwell et al., ”‘Current Ratios: A Self-scaling Technique for
Production Iddq Testing,”’ ITC, 1999, pp.738-746

[8] S. Sabade and D. Walker, ”‘Use of Multiple Iddq Test Metrics for
Outlier Identification”’, ”‘ VTS”’, 2003

[9] J. Roehr, ”‘Very-Low Voltage (VLV) and VLV Ratio (VLVR) Testing
for Quality, Reliability, and Outlier Detection”’, ITC, 2006

[10] S.Sabade and D. Walker, ”‘Evaluation of Effectiveness of Median of
Absolute Deviations Outlier Rejection-based Iddq Testing for Burn-
in Reduction”’, VTS, 2002

[11] P. Buxton and P. Tabor, ”’Outlier Detection for DPPM Reduction”’,
”‘ITC”’, 2003

[12] C. Schuermyer et. al, ”‘Screening VDSM Outlier using Nominal and
Subthreshold Supply Voltage Iddq”’, ITC, 2003

[13] Huisman et al. ”‘Data Mining Integrated Circuit Fails with Fail Com-
monalities”’, ITC 2004

[14] S. Jandhyala, et al. ”Clustering Based Techniques for IDDQ Testing,”
(ITC, 1999, pp. 730-737.

[15] R. Daasch and R. Madge, ”‘Variance Reduction and Outliers: Statis-
tical Analysis of Semiconductor Test Data”’, ITC, 2005

[16] R. Daasch and R. Madge, ”‘Data-Driven Models for Statistical Test-
ing: Measurements, Estimates and Residuals”’, ITC, 2005

[17] R. Madge et al. ”‘The Value of Statistical Testing for Quality, Yield
and Test Cost Improvement”’, ITC, 2005

[18] A. Nahar et al. ”‘Burn-in Reduction using Principal Component
Analysis”’, ITC, 2005

[19] K. Butler et. al., ”‘Successful Development and Implementation of
Statistical Outlier Techniques on 90nm and 65nm Process Driver De-
vice”’, IRPS, 2006

[20] L. Fang, M Lemnawar, and Y. Xing, ”‘Cost Effective Outliers
Screening with Moving Limits and Correlation Testing for Analogue
ICs”’ ITC, 2006

[21] Jeffrey Roehr, ”‘Measurement Ratio Testing for Improved Quality
and Outlier Detection”’ ITC, 2007

[22] S. Wu et, al. ”‘Statistical Analysis and Optimization of Parametric
Delay Test”’, ITC, 2007

[23] I.T. Jolliffe, Principal Component Analysis. Springer, 1986
[24] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. 2nd

edition, Springer 1999.
[25] B Scholkoph et al., ”‘Estimating the support of a high-dimensional

distribution”’, Neural Computation 13, 2001, pp. 1443-1471.
[26] Nello Cristianini and John Shawe-Taylor. An Introduction to Support

Vector Machine. Cambridge University Press, 2002.
[27] C. Chang and C. Lin. LIBSVM: a library for sup-

port vector machines. 2001, Software available at
http://www.csie.ntu.edu.tw/c̃jlin/libsvm.

[28] J. Jin, X. Wang, and B. Wang ”‘Classification of Direction perception
EEG Based on PCA-SVM”’ ICNC, 2007

[29] Breiman, Leo, ”‘Random Forests”’. Machine Learning (45) 1, pp.
5-32, 2001.

[30] Benjamin N Lee, libRF: a library for Random Forests, 2007. Soft-
ware available at http://mtv.ece.ucsb.edu/benlee/librf.html

Paper 1.1 INTERNATIONAL TEST CONFERENCE 10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

