
Diagnosis of design-silicon timing mismatch with feature encoding and
importance ranking – the methodology explained ∗

Pouria Bastani1, Nick Callegari1, Li-C. Wang1, Magdy S. Abadir2

1Department of ECE, UC-Santa Barbara
2Freescale Semiconductor, Inc.

Abstract
For sub-65nm design, there can be many timing effects

not explicitly and/or accurately modeled and simulated.
For design-silicon timing convergence, this paper describes
a novel path-based diagnosis approach that analyzes and
ranks potential design related issues causing the unexpected
timing effects. We explain in detail how a path can be
encoded with a set of diverse “features” based on one’s
knowledge of the potential issues. We explain how these
features can be interpreted differently in a data learning
algorithm based on adjusting a so-called kernel function.
Then, we explain how kernel-based data learning can be
used to rank the importance of features such that a feature
contributing the most to design-silicon timing mismatch is
ranked the highest. We conclude the paper by showing an
application result on an industrial ASIC design.

1 Introduction

As technology scales, it has become increasingly diffi-
cult to have predicted timing from modeling and simulation
match actual timing observed on silicon [1]. Each gener-
ation of technology can introduce new variations and ef-
fects that are either not modeled or not modeled accurately.
When design-silicon timing mismatch is observed, one de-
sires to identify the most important effects in order to im-
prove modeling and simulation and consequently, improve
the current and future designs and their timing yields.

To diagnose, a common approach would be to hypothe-
size a cause and run simulations and/or physical debug to
identify its effects. As the induced effect showed similar
results to the observed mismatch, it would presumed to be
the problem. Furthermore, any residual mismatch requires
subsequent hypotheses and validations. This continues until
the mismatch can be fully explained by a chain of causes.
The effectiveness of this approach diminishes as there can
be a large number of potentially unmodeled and mismod-
eled effects in the nanometer era [2]. When considering

∗This work is supported in part by National Science Foundation, Grant
No. 0541192 and Semiconductor Research Corporation contract No.
2007-TJ-1585

all possible such effects and their combinations, the search
space can be enormous.

Recently, the authors in [3, 4] proposed an alternative
diagnosis methodology for analyzing design-silicon timing
mismatch. The approach collectively analyzes many poten-
tial sources of uncertainty by formulating the problem as a
data learning problem. Figure 1 illustrates the methodology.

Mismatch Data

Ranking Method

Learning
Engine

Kernel
Function

Path feature encoding

Statistical Learning

Rank of feature importance

Define a set of “features” to study

Measured
Delays

Predicted
Delays

Figure 1. Overview of methodology

First, mismatch data is based on predicted path delays,
e.g. from a static timing analysis tool, and measured path
delays on silicon chips. To diagnose this mismatch data, a
set of features is selected. These features define the search
space for potential causes of the observed mismatch. Then,
these features are used to encode paths into path vectors, i.e.
each path is represented as a vector of numerical values. To-
gether, they form a data matrix where a learning algorithm
can be applied to build a model. This is a prediction model
from the path vectors to the mismatch data, i.e. given a path
vector, the model predicts the amount of mismatch on the
path. The final step is to utilize this model to evaluate the
importance of features and then rank them accordingly.

The methodology was first introduced in [4] with the em-
phasis on the explanation of the learning algorithm, in par-
ticular the Support Vector Machine (SVM) classifier. The
features were based on cells and wires and the kernel func-
tion used to interpret them was fixed. With a limited set
of features and the simple kernel function, the authors then
suggested a feature ranking method that worked effectively.

Paper 14.2
1-4244-4203-0/08/$20.00 c©2008 IEEE

INTERNATIONAL TEST CONFERENCE 1

This paper intends to generalize the scope of the method-
ology, by improving on three aspects: (1) One should be
able to use a diverse set of features representing diverse
sources of timing effects without restriction (2) The val-
ues on a subset of features can be interpreted differently
and/or weighted differently from another subset, based on
one’s domain knowledge. (3) The ranking method should
be general enough to work with any feature definition and
any kernel function in use.

With these three objectives in mind, the rest of the paper
follows as below. Section 2 reviews the background and re-
lated work. Section 3 uses illustrative examples to explain
what the proposed methodology intends to achieve. Sec-
tion 4 presents a comprehensive view on feature generation
and encoding. Section 5 explains how a kernel function in-
terprets features. Section 6 gives a brief overview of the
learning engine. Section 7 discusses feature ranking and
proposes a new and more general ranking method. Section 8
presents results on an industrial ASIC design. Section 9 ref-
erences some work that has been done in the area of silicon
repair and concludes the paper.

2 Background
Unpredictable silicon performance is a growing concern

in sub-65nm process technologies. It is too expensive to
consider all possible effects causing the unpredictability.
Hence, one desires to have a methodology to uncover the
most prevalent effects so that resource and effort can be
properly allocated to address them. Such effects can be de-
sign, design methodology and/or process dependent.

Traditional diagnosis is based on the notion of “failing
chips.” Typically, failure data is analyzed for timing defects
using fault-based approaches [7] [8]. Advancements in this
area include taking multiple faults into account [9] or taking
statistical timing defects into account [10]. When the causes
are not location-based and/or fault-based, the effectiveness
may be questionable. Moreover, when analyzing design-
silicon timing mismatch, one may not have a clear notion of
“failing chip” nor a clear definition of a “fault list.”

This work assumes that design-silicon mismatch is due
to unmodeled and/or mismodeled systematic and random
timing effects. The goal is to uncover the most important
systematic effects in the presence of random noise. Mis-
modeled effects may include those not accurately modeled
or over-modeled (meaning too much added margin).

As mentioned in the Introduction, previous works [3, 4]
focused the study on the learning algorithm, i.e. how and
what algorithms should be used for learning and how to
rank features. The work in [5] improves the SVM classi-
fier algorithm used in [3, 4] with the ε-insensitive Support
Vector Regression (ε-SVR) algorithm [27]. Although these
works were important for developing the overall diagnosis
methodology, they also raise questions regarding the appli-
cability of the proposed approach in practice.

The main limitation of the methodology lies in the def-
inition of the features. All previous works [3, 4, 5] use
cells and groups of wires as features. In practice, the con-
cerns can go beyond just cells and wires. Unmodeled and
mismodeling effects can be associated with a diverse set of
sources from layout, location, variations, etc. at gate, tran-
sistor, or SPICE level. To provide maximal flexibility, we
need a methodology that can handle any type of feature.

For example, suppose we are interested in two types
of features, the X-Y location of a path (described in sec-
tion 4.3) and the drive strength of a cell characterized by
transistor size. The values for the X and Y coordinates have
completely different meanings from the value of transistor
size. These values have to be properly interpreted by the
learning algorithm. In SVM learning, feature interpretation
is decided by the kernel function [29]. Therefore to allow
using a diverse set of features, one needs to adopt a kernel
that can properly reflect the meaning of those features.

As we allow feature definition to go beyond wires and
cells, the feature ranking method in [3, 4, 5] needs to be
generalized as well. This is because the previous ranking
method depends on the fact that all feature values can be
interpreted in a certain way. When we allow multiple ways
to interpret subsets of features, the method may become in-
effective. Hence, a more general method is desired.

3 Explaining the essence of the proposed
methodology with simple examples

In this section we use simple examples to illustrate how
the impact of both intra-die and inter-die [11] variations can
be analyzed with the proposed methodology.

3.1 Systematic intra-die variation

Systematic intra-die variation is often caused by layout
and topological interaction with the process. Intra-die vari-
ation can be classified into two groups: process related vari-
ations and environmentally induced variations [12]. Ex-
amples of process variations are optical proximity effects,
chemical-mechanical planarization effects and spatial vari-
ation effects due to lens aberration. Examples of environ-
mentally induced effects are voltage and temperature values
that vary across the die. The magnitude of these effects de-
pend on the design, process and manufacturing precision.
Our proposed methodology can analyze the impact of intra-
die variation along with other systematic effects. We use
the following hypothetical example to illustrate this point.

Figure 2(a), shows hypothesized mismatch map mea-
sured on paths across a die. If the mismatch is from different
paths, the values shown can be thought of as the percentages
of mismatch delay differences with respect to the predicted
delays. If the mismatch is from copies of the same path,
the values can be thought of as the actual delay differences
between predicted delays and measured delays.

Paper 14.2 INTERNATIONAL TEST CONFERENCE 2

(a) Original Map (b) Learned Map

Figure 2. Learning an X-Y map with 22 features
where the first two are X,Y coordinates and the
rest are uncorrelated features

Suppose we select 22 features to study the mismatch.
The first two are the X and Y coordinates of the path. The
rest happen to be features not correlated to the mismatch.
The point to show is that, if the methodology works, the
first two features should be ranked higher than the rest.
This is because we know that the map is modeled us-
ing two Gaussian functions with the X and Y locations of

the grid as variables, i.e. f (X ,Y) = e
−[(X−c11)2+(Y−c12)2]

σ1 +

e
−[(X−c21)2+(Y−c22)2]

σ2 . Where c1∗ and c2∗ are the X and Y cen-
ter of the two distributions and σ∗ controls the width of the
distribution. Therefore, we knew in advance that the map
was independent of the 20 features.

After applying the learning algorithm ε-SVR [5] to learn
the mismatch map, for every path the learned model pre-
dicts a mismatch value. If learning is effective, plotting
these values should produce a map similar to the original
map. Figure 2(b), shows the predicted mismatch map. We
observe that the predicted map is similar to the original map,
showing good learning accuracy.

Next we use the learned model to evaluate the impor-
tance of each feature (we will discuss the method later). We
rank features based on this importance. After normalizing
feature importance values into the range [0,1], the impor-
tance values of the first two features are 1 and 0.645, and
the rest are between 0.03 and 0.04. This shows that the
methodology correctly identifies the X and Y coordinates
are the features contributing to the mismatch the most. It
is noted that the methodology does not tell why X and Y
coordinates are important, i.e. it does not say what original
function f is. All it says is that f depends on X,Y the most.

Suppose the systematic mismatch can be the result of
temperature, OPC, CMP, etc. To uncover which has the
greatest impact, one needs to add three features T,O,C cor-
responding to the three sources of uncertainty. For exam-
ple, one may have a hypothesized temperature map based
on power analysis. The value of feature T on a path can
then be the hypothesized temperature degree based on the
location of the path on the temperature map.

After ranking, if one of the T,O,C features is ranked
higher than X ,Y , we know that the feature contributes to the

mismatch the most. If none of them is ranked higher than
X ,Y , then we know that additional features may be needed
to explain the map. We note that the map may be due to in-
teraction between two of T,O,C or among all three. In this
case, the two or all three should be ranked higher than X,Y.
In the work [6], this is called a higher-order effect, where
the effect depends on a combination of multiple features
rather than just a feature individually.

(a) Original Map (b) Learned Map

Figure 3. Learning an X-Y map with an addi-
tional feature V

To illustrate the above discussion, suppose we have a
new mismatch map using a new function f (X ,Y,V)′ =
0.1 ∗ f (X ,Y)+V , where V is a new feature variable. The
point here is that now the mismatch depends more on the
value of V than the X,Y coordinates. Again, we included
the 20 uncorrelated features in the analysis.

Figure 3(a), shows the values of this new function
f (X ,Y,V)′. We see that in this case, the map does not show
a clear dependency on the X,Y coordinates.

Figure 3(b), shows the predicted mismatch map. Then,
with the learned model, we rank the 23 features again. Af-
ter normalizing the feature importance values into [0,1], the
importance of feature V , X and Y were 1, 0.14 and 0.26 re-
spectively, showing a much higher importance for feature V .
The rest had an importance between 0.03 and 0.06, showing
very little impact on the mismatch data.

In this example, one may think V as the temperature T
(or any other feature that may or may not be location based).
In this case, the ranking result shows that temperature can
explain most but not all the variation. This is because the
importance values of X,Y are still significant (relative to
the rest 20). Therefore, we can conclude that there are other
variation effects not included in the feature list. We note
that the proposed methodology does not put a strict limit
on the number of features. Hence, if one is unsure about
what features are relevant, the strategy is to include as many
as possible and let the learning engine and ranking method
identify which are most important.

3.2 Systematic inter-die variation
The above discussion explains how the proposed

methodology can be used to analyze one die. What if one
want to analyze multiple dies together to consider effects
due to inter-die variation? Systematic inter-die variation
can be due to normal manufacturing tolerances that affect

Paper 14.2 INTERNATIONAL TEST CONFERENCE 3

the mean value of a parameter from one die to another (die-
to-die) across different reticles, wafers or lots [13]. The key
concern is how much the performance varies for one path
across different die. Inter-die variation is typically design
independent and related to process and equipment.

0

1

2

3

4

5

6

7

-60 -30 0 30 60 90

Zero Delay
Difference

Path delay difference

O
cc

u
rr

en
ce

(a) Die-to-Die variation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-15 15 45 75 105 135 165
Path delay difference

O
cc

u
rr

en
ce

Shift

Zero Difference

(b) Die-to-Die + other components

Figure 4. Path delay difference for a path on 20
different dies

Figure 4(a) and (b), show two hypothesized timing mis-
match histograms for a path across 20 different dies. The
distribution in Figure 4(a) has a mean of 0ps and a 3-σ of
±50ps. The distribution in Figure 4(b) has a mean of 90ps
and a 3-σ of ±40ps. For this figure, the variation of the
delay differences could be due in part to inter-die variation;
however the shift of the mean from 0ps to 90ps would most
likely be the result of other systematic effects.

To include inter-die variation into consideration, we add
die index as a feature. When analyzing the same topological
path, but on different dies, this feature allows us to check if
the mismatch is due primarily to inter-die variation or to
other systematic effects.

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

Dominant Feature
Die Index

Feature Number

F
ea

tu
re

 Im
p

o
rt

an
ce

Other Features
Minimal Importance

(a) Die-to-Die variation

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

Three
Other
Features
Dominant

Feature Number

F
ea

tu
re

 Im
p

o
rt

an
ce

Die Index
Not
Important

(b) Die-to-Die + other components

Figure 5. Ranking of features for a path on 20
different die

Figure 5(a) and (b), show the feature importance results
using the datasets in Figure 4(a) and (b), respectively. Fig-
ure 5(a), shows a very strong importance for the die index.
This means that almost all of the timing mismatch is due
to inter-die variation. Other features had little impact. On
the contrary, Figure 5(b), shows little importance for the
die index, but strong importance for three other features.
This means that other features contributed more to the tim-
ing mismatch than the inter-die variation.

3.3 Summary and discussion

Again, if one desires to know why (or which) inter-die
variation impacts the mismatch the most, features origi-
nating from inter-die variations should be included in the
analysis (as that in the intra-die example). In summary, the
above examples illustrate several key points in the proposed
methodology: (1) The methodology can be used to analyze
a single die or a collection of dies. (2) Features can be de-
fined at different levels of abstraction. For example, X,Y
coordinates may tell the mismatch is due to intra-die vari-
ation but not which variation. A temperature feature can
point to temperature variation, but it does not explain why.
To understand why, one may need features corresponding to
lower-level sources of temperature variation, i.e. static and
dynamic power consumption. (3) The methodology sug-
gests that diagnosis can be done in a hierarchical manner,
from the most abstract view first, to a detailed view for find-
ing the root causes. (4) The methodology is not for solving
a well-defined diagnosis problem. It is more for solving
an ill-defined diagnosis problem where a user has limited
knowledge of what is going on. It provides the infrastruc-
ture that allows a user to apply limited domain knowledge
and efficiently study and understand the mismatch data.

The benefit the methodology brings is efficiency and
flexibility, allowing a user to hypothesize a variety of fea-
tures and quickly narrow down to the most relevant. When
one is unsure about the reasons behind the mismatch, she/he
can always begin with a large number of features. One may
wonder what features to begin with. In our view, this de-
pends on the design, design methodology (and hence design
company), and the process (and hence the fab). In other
words, the definition of features may become proprietary
information to a company because it represents the list of
potential holes in the design and/or manufacturing process.
With this in mind, the next section gives an overview of
where features may be defined, providing a starting point
for a user to develop more advanced features.

4 Feature generation and encoding
As shown in section 3, any feature that does not have a

significant impact on the path delay difference will be ig-
nored in the learning and subsequently ranked with low im-
portance. Note that adding more features does not have a
large effect on the learning algorithm in respect to accuracy
nor runtime [6].

Features can be occurrence-based or descriptive-based.
Occurrence-based counts how many times a feature appears
in a path. For example, the number of times a 2-input
NAND gate appears in a particular path is 3. Descriptive-
based are real value descriptions of a feature. For example,
the average functional temperature for a particular area of a
die where a path is located is 74◦F.

In order to find the most relevant features to analyze we

Paper 14.2 INTERNATIONAL TEST CONFERENCE 4

conducted a literature survey to see which effects have the
highest potential to be mismodeled. We divide features into
five groups: cell-based, interconnect-based, location-based,
dynamic effects and margin related mismatch.

4.1 Cell-based features
In order to generate an accurate cell timing library, much

effort is spent on collecting statistical information on the
variation of performance based on process, voltage and
temperature parameters (PVT). From this statistical data,
SPICE level transistor models are generated. The problem
is that due to process variations, temperature dependencies
and influence of voltage variations there is no single silicon
that can serve as a reference [20]. Thus, there can easily be
mismodeled effects in the transistor models.

Once the transistor models are finalized, the next step
is to perform timing characterization for each cell. Char-
acterization is manually intensive, therefore it is possible
for a timing model to have errors upon creation [21]. Dur-
ing characterization, an extracted cell netlist is simulated
for different conditions by varying the input slope, output
load, voltage and temperature. The extraction process itself
is only an approximation [2] and may induce its own errors.

During characterization not every input slew, load, volt-
age and temperature is simulated. Thus, when doing de-
lay calculations for a cell, all operating conditions that do
not exactly match the simulated conditions need to be in-
terpolated. Due to potential non-linearities in cell perfor-
mance [2], this can incur some error. To add further com-
plication, if a cell has extreme operating conditions outside
of the scope of what was simulated, then extrapolation is
necessary for delay prediction. Extrapolation can be very
inaccurate, due to highly non-linear behavior seen during
these conditions [20]. Examples of large timing mismatch
have been shown in [14] [15] [17] [20], where a weak driv-
ing cell tries to drive a large load or a strong driving cell
tries to drive a very small load. Both cases are outside of
normal operating conditions and can be very unpredictable.

The authors in [20] showed that for a 180nm cell library,
some complex gates (i.e. muxes) can have more than a 10%
delay mismatch between Spice modeling and STA models.
In addition, [22] showed that for a given interconnect load,
smaller drive strengths are more susceptible to interconnect
variation than larger drive strengths.

Transistor level parameters have also been shown to have
mismatch. For example there can be mismatch between
PFET on-current and NFET on-current [11] [14] [18]. All
these inaccuracies can lead to hardware mismatch [16] and
result in a large impact on the predictability of clock net-
works and on inverter chains.

To analyze all of these potential sources of cell uncer-
tainty we will start by treating each cell type as a different
feature. This will account for complex cells (muxes, cus-
tom blocks, etc) along with traditional cells (inv, nand, etc).

Next, to analyze PFETs (pull-up) and NFETs (pull-down)
separately, we will divide the cells by their output transition
on the path. For example, a 2-input nand cell with a rising
output transition is one feature and the same nand cell with
a falling output transition is another feature. Since we are
still worried about cells in “extreme” operating conditions
we will further divide the cells based on the amount of ca-
pacitive load they are driving with respect to the maximum
capacitive load they are characterized to drive, i.e. %Load
= ActualLoad / MaxLoad. If %Load ≤ 2% or ≥ 100% then
it will be treated as a separate feature then if %Load is be-
tween 2% and 100%. This will target the sources of uncer-
tainty due to extreme operating regions.

In order to have some more general cell-based features,
we will include active transistor types in a path as features.
This number of feature depends on how many flavors (typi-
cal, high-vt, low-vt, etc) of transistors are used in a process
and in a design. This is done in case there is simple system-
atic shift in the low-level spice parameters that is indepen-
dent of cell type.

4.2 Interconnect-based features
Interconnect modeling also begins by collecting statisti-

cal information on the variation of performance based on
PVT data. Therefore, interconnect modeling is prone to
the same low-level mismodeling as cell modeling. RC ex-
traction tools use these silicon models as a basis to ex-
tract as accurate parasitics as possible. However, these
tools have been shown to have large computational error
due to the complexity of the problem [22], in particular for
very short interconnects. To control the complexity, most
tools approximate further by using 2.5-dimensional extrac-
tion model [23]. Also, algorithms for calculating intercon-
nect delay and signal edge degradation involve approxima-
tion techniques proprietary to the tool vendors [20]. This
makes it difficult to estimate the exact accuracy of the tools.

Each metal and via layer presents an independent pro-
cessing step in the manufacturing process, thereby insuring
a high degree of miscorrelation between one layer and an-
other [11]. The work in [17], showed a timing skew that
was due to a larger than expected resistive Via3 connection.

To analyze the potential sources of interconnect uncer-
tainties we want to have a separate feature for wires and
vias. For each stage in a path we can count the number
of metal layers and vias an interconnect traverses through.
Then we will bin a stage based on this number. For example,
if one stage goes through 2 metal layers and 2 vias to get to
the next cell, then in the 2-metal layer bin and the 2-via bin
we will place a 1 that corresponds to this one stage. If an-
other stage in the path went through 2 metal layers, but had
4 vias, then the 2-metal layer bin would become 2 and the
4-via bin would receive a 1. The array for this path would
look like M = (0,2,0,0, ...), V = (0,1,0,1, ...), where M is
the metal layer bin and V is the via bin.

Paper 14.2 INTERNATIONAL TEST CONFERENCE 5

If higher resolution is required, one can use additional
features associated to interconnect shapes. Many Design
Rule Checks (DRC) are in place by the fab to ensure high
yield on their parts. These checks recommend (but do
not require) that certain shapes of interconnects should be
avoided. One example is a T − intersection, where a stem
endpoint can cause metal deposition to be incorrect. An-
other example is an end o f the line rule, where an end of a
line has some metal ahead of it and some metal to the right
and left. When OPC corner correction is done on this line
it can become much smaller than originally designed. Any-
thing connected to this line can be damaged, for example a
via to a different metal layer. In order to analyze these opti-
cal related interconnect issues, one may have features such
as how many T-intersections are on a path, how many iso-
lated lines are surrounded by metal on a path, and the risk
score from an OPC tool for the interconnects of a path.

4.3 Location-based features

Location-based features are mostly related to intra-die
and inter-die variations, as mentioned in section 3. System-
atic intra-die variation can be due to optical proximity ef-
fects, inter level dielectric thickness variation, chemical me-
chanical planarization (CMP), lens aberration, voltage vari-
ation and temperature variation [11]. To analyze these po-
tential sources of intra-die uncertainties we can use the X,Y
coordinates of a path on the die as a feature (section 3.1) as
well as other features more directly linked to the sources of
variations. If a path is short, then the middle X-Y coordi-
nate of the path should suffice. If a path is very long then
one may use multiple X-Y coordinates. For example, the
beginning, middle and end of the path. The CMP variation
is largely due to density issues on a die [2]. To analyze these
effects, one can use the overall area of a path as a feature.
To calculate this value we draw a bounding box around the
path, then measure the diagonal distance of this box which
we use as an approximation of the path area.

Systematic inter-die variation is typically considered as
a shift in the mean of some parameter values equally across
all devices on any one chip [13]. An example of this is the
“bowl” shape variation on a wafer, where die’s that fall on
the same ring of a wafer exhibit similar parameter shifts.
To analyze these effects we can use the die index number
as a features as previously explained in section 3.2. To an-
alyze multiple dies across different reticles, wafers or lots,
an index for each of these can be used as a feature.

4.4 Dynamic effects

Dynamic effects are timing uncertainties that are due to
input patterns on a specific clock cycle. These effects in-
clude dI/dt voltage droop and cross-coupling noise. Voltage
droop occurs when there is a sudden current draw (dI/dt) on
a localized region of the die. If the change in current is large
enough, the power delivery system cannot supply the re-

quired current fast enough for the gates and will slow down
the propagation speed of a path [18] [25]. Cross-coupling
noise occurs when the capacitance between two neighbor-
ing wires causes a logic event on one wire to induce noise
onto the other wire which can slow-down or speed-up a par-
ticular transition [18] [24].

Voltage droop can be analyzed by using a feature that es-
timates the current draw (in amps) for a given size grid for
the cycle of interest. Similarly, the authors in [26] showed
how to approximate current draw by analyzing switching
activity for a particular region surrounding a path for the cy-
cle of interest. The switching activity number would then be
used as a path feature to analyze the effect of voltage droop.
Cross-coupling noise can be analyzed by approximating the
amount of delay push-out (in ps) that would occur assuming
worst case aggressor slope and alignment for each stage in
a path as a feature [26].

4.5 Margin related mismatch
To account for all the different uncertainty on silicon, the

simplest and sometime most effective approach is to design
extra margin into the models. However, it is not econom-
ical to continue adding more margin to account for all the
new sources of variation [11]. Adding too much margin
can also have a negative impact on design-silicon conver-
gence. The authors in [3], showed that for a particular high-
performance microprocessor, some path delays were pre-
dicted 2X overly pessimistic by STA tools when compared
to silicon measurements. By adding in this much excessive
margin to a design, there will be a lot of performance left on
the table. In order to analyze the impact of margin on timing
mismatch, one can use the estimated margins themselves as
features. If the mismatch data is highly correlated to these
margins (as a result, they are ranked high), then excessive
margin is the problem.

4.6 Summary
In summary, we have given a detailed description of

where features may come from. We compose our list based
on effects that have been known and published in literature.
Figure 6 shows what an example dataset may look like be-
fore running the learning tool. Each row in the dataset is
a different path and each column is a different feature. We
note that feature values may need to be interpreted differ-
ently. For example, 74◦F and 3 times mean different things.
How to make the learning engine be aware of the difference
is an interesting question. After all, when the engine is pro-
cessing the data, it only sees the numbers 74 and 3. In the
next section, we will explain how a kernel function can be
designed to reflect one’s intuition on the interpretation of
feature values.

5 Kernel function
For a modern machine learning algorithm like SVM to

work, all the information it needs is contained in a so-called

Paper 14.2 INTERNATIONAL TEST CONFERENCE 6

Path Features
f1 f2 f3 f4 f5 … fn

p1

p2

p3

p4

…
pm

0 1 2 0 23 0
2 0 1 2 11 1
1 0 3 1 2 0
0 0 0 3 0 3

1 1 1 0 1 2

12 ps
-31ps
99 ps
69 ps

85 ps

Path Delay
Difference

P
at

h
s

X = Y =

Figure 6. Example dataset

similarity matrix. This matrix measures the similarity be-
tween every pair of samples, in our case every pair of paths.
The interesting point here is that the feature values on a sin-
gle path by themselves have no meaning for learning. Only
when we compare two vectors of feature values from two
paths can meaningful information be learned.

The similarity between two vectors of feature values is
measured in a feature space defined by a so-called kernel
function. For example, suppose we have three path vec-
tors, S1 = (3,3,3), S2 = (3,0,3) and S3 = (1,0,1). Suppose
one’s intuition for the feature encoding scheme is that S1-S2

should have a higher similarity than S2-S3. To capture this
perspective, one can use the dot product “〈·, ·〉” as the kernel
function. Then, we have 〈S1,S2〉 = 3×3 + 3×0 + 3×3 =
18. We have 〈S2,S3〉 = 3×1 + 0×0 +3×1 = 6.

Suppose, in another case, one’s intuition desires the
contrary that S2-S3 should have a higher similarity than
S1-S2. Then, one can use a different function, such
as the cosine function cos(x,y) = 〈x,y〉

||x||||y|| Then, we have

cos(S1,S2) = 18√
32+32+32

√
32+02+32

= 18
22.0454 = 0.8165. We

have cos(S2,S3) = 6√
32+02+32

√
12+02+12

= 6
6 = 1. We see

that by changing the definition of the kernel function, we
can change how the feature vectors are interpreted and con-
sequently, how the learning algorithm behaves.

What if we want one way to interpret a subset of features
and another way to interpret another subset of features (the
two sets may or may not be mutually exclusive)? Consider
3 paths encoded with three features: The count of the occur-
rences of a 2-input NAND cell in a path, the X coordinate
and Y coordinate of the path on a die. For example, they are
P1 = (2,100,200), P2 = (1,150,300) and P3 = (5,10,400).
The range of the first feature is between 0 and the maximum
number of the cell occurrences on a path. On the other hand
the X,Y coordinates are limited by the size of the die. No-
tice that a value of 0 for NAND count means something
entirely different from the 0,0 for the X,Y coordinates.

The solution is to combine two kernel functions into a
single one. The first kernel is applied to the occurrence and
the second is applied to the coordinates. Suppose we ap-
ply n kernel functions, k1, . . . ,kn, to interpret n subsets of
features. Kernel function theory [29] states that any linear
combination of kernels, K = w1k1 + w2k2 + · · ·+ wnkn, is
also a valid kernel function. Here w1 . . .wn are constants

to weight the result from each kernel differently. This al-
lows the design of a kernel function to match ones intuition
on interpreting features, where some features have different
meaning and importance than others.

For example, for all occurrence-based features, we use
the polynomial kernel [29], Poly(v1,v2) = 1

2n (〈v1,v2〉
||v1||∗||v2||)

n,
to measure the similarity. The authors in [6], showed
the superior capability of using the polynomial kernel to
handle high-order timing effects due to combinations of
occurrence-based features. For X,Y coordinates we can

use the Gaussian kernel, Gau(v1,v2) = e
−||v1−v2||2

σ , which
showed excellent learning results in section 3.1.

6 SVM learning engine

The learning engine part of the methodology has been
studied carefully before in [3, 4, 5]. As mentioned before,
the conclusion is that the SVM algorithm ε-SVR performs
the best [5]. This section gives a quick overview of the SVR
algorithm. More interested readers can refer to [27] [28].

Suppose we are given n features { f1, . . . , fn} and m
paths {p1, . . . , pm}. Let each path pi be described as xi =
(xi1, . . . ,xik) where xi j is the value of feature f j. Suppose
the path delay difference on path pi is yi. From Figure 6 we
see that matrix X (= [x1, . . . ,xm]T) describes the path charac-
teristics and vector Y (= [y1, . . . ,ym]T) records the observed
path delay differences.

The goal of learning is to build a model F based on ma-
trices (X ,Y), so that F(X) gives the result Y ′ = [y′1, . . . ,y

′
m]T

such that err = ∑m
i=1 ||yi − y′i||2 is small. In SVR, instead of

minimizing err, the learning tries to minimize both err and
the model complexity, i.e. it tries to find the simpliest model
to best explain the dataset [28]. At the core of every SVM
algorithm, it solves a convex quadratic optimization prob-
lem. Using the Lagrange method, the solution is obtained
as the following form:

F(x) =
m

∑
i=1

αik(xi,x)+ b (1)

where k() is the kernel function, b is a constant, and αi

is the Lagrange multiplier for path vector �xi. Each αi char-
acterizes the importance of the path in building the model
F . A larger αi in magnitude means that the path vector is
more important. Some αi can be zero. In this case, the
path has no effect in the model. Those path vectors whose
Lagrange multipliers are non-zero, are called the support
vectors. In support vector analysis, the model complexity is
proportional to the number of support vectors.

7 Ranking method

Once the model is built, we need to convert the path
importance characterized by the Lagrange multipliers (αi)
into feature importance so that features can be ranked. The
method proposed in [3, 4] is the following.

Paper 14.2 INTERNATIONAL TEST CONFERENCE 7

wj =
m

∑
i=1

αi ∗ xi j (2)

Where xi j is the value of feature j for path i and wj is
the calculated weight for feature j. A higher weight means
that the particular feature is more important in deciding the
difference in the dataset. From equation 2, one can see that
non-support vectors, i.e. unimportant paths, are discarded
in the feature weight calculation. This weight calculation
showed excellent results for the occurrence-based feature
set used in [4] [5]. However, it is unclear if it is generalized
enough to work on any type of features.

In this work we take a more general approach to calcu-
late feature importance. This approach works with any fea-
ture list and any learned model. Once a model is learned,
we take the original feature matrix and randomly perturb
one feature at a time across all paths. The way we do the
perturbation for each feature is by randomly shuffling that
features values over all the paths. This way we do not gener-
ate any feature values out of the expected range. A similar
approach was effectively used in the tree-based statistical
learning algorithm RandomForrest [30].

After each feature value perturbation, we apply the
learned model on each path using the perturbed matrix and
try to predict the timing mismatch for the path. We ana-
lyze the prediction accuracy in terms of the mean square er-
ror (MSE = 1

m ∑m
i=1(ypredict −yactual)2). Note that a separate

MSE is calculated based on each feature perturbation. If the
MSE is higher, then it means that the feature is more impor-
tant. This is because by making the feature value random
across all paths, the model prediction degrades and hence,
the model depends more on the feature. If the MSE does
not change, then the feature had no impact on the learned
model and is considered unimportant.

We conduct three controlled experiments to compare the
effectiveness of our new proposed ranking approach using
the MSE to the previous ranking approach using equation 2.
For these experiment we will refer to these approaches as
the “New” and “Old” methods, respectively. In the first two
experiments we use only cell based features, similar to the
work in [5], and compare the ranking results between the
two approaches using a gaussian uncertainty model and an
exponential uncertainty model. For the third experiment we
compare the two approaches using some of the new features
generated in this work, in particular X-Y coordinates.

In this experiment, we take 130 cells and make 260 fea-
tures by separating output rising and falling transitions as
two features. Each feature is occurrence-based. We ran-
domly generate 5000 paths, each consisting of 10-25 cells.
Every occurrence of each feature is associated with two un-
modeled timing deviations, one random and one systematic.
The random and systematic gaussian deviation are gener-
ated assuming a normal distribution with 3σ equal to 20%

0

10

20

30

40

50

60

-2 2 6 10 14 18 22 26 30 34
Cell Delay Mismatch (ps)

N
u

m
b

er
 o

f
C

el
ls

(a) Gaussian Uncertainty Model

0

20

40

60

80

100

120

-15 15 45 75 105 135 165 195

Cell Delay Mismatch (ps)

N
u

m
b

er
 o

f
C

el
ls

(b) Exponential Uncertainty Model

Figure 7. Gaussian and Exponential Uncertainty
Models for Cell Delays

of the average cell delay. The systematic exponential de-
viation is generated using an exponential distribution with
mean equal to 5% of the average cell delay. Figure 7(a) and
(b), show the amounts of the systematic deviations associ-
ated with the 260 features for the gaussian and exponen-
tial uncertainty models, respectively. Based on these un-
certainty models we create a learned model using the SVR
algorithm. Then, we used both feature ranking methods to
rank the features based on importance.

Table 1. Ranking comparison between Old and New
method for a gaussian uncertainty model

rank 1 2 3 4 5 6 7 8 9 10 sum
Ideal list 26.2 20.9 18.5 18.5 18.4 17.8 17.8 17.6 17.4 17.1 190.1

Old Method 26.2 18.5 20.9 17.8 18.5 17.1 16.8 18.4 17.8 17.6 189.5
New Method 26.2 18.5 20.9 18.5 16.8 17.8 17.8 17.6 18.4 17.1 189.5

Table 1 shows the comparison of the ranking results for
the top 10 features for the gaussian uncertainty model. The
“ideal list” is the true ranking based on the actual systematic
deviations. The sum of these top 10 deviations is 190.1ps.
Notice that the Old and New ranking methods are very com-
parable in accuracy (both with 189.5ps) and both found 9
out of 10 from the ideal list. The only difference between
the two rankings is a slight re-ordering of the 10 features.

Table 2. Ranking comparison between Old and New
method for a exponential uncertainty model

rank 1 2 3 4 5 6 7 8 9 10 sum
Ideal list 208 202 202 190 173 118 117 106 102 102 1521

Old Method 202 208 190 202 173 117 118 102 102 96 1512
New Method 208 202 190 202 173 88 118 117 102 102 1504

Table 2 shows the comparison of the ranking results for
the top 10 features for the exponential uncertainty model.
Again, the results show that both the Old and New ranking
methods can accurately rank 9 out of 10 from the ideal list.

For the third experiment we compare the ranking results
between the old and new method using some of the new
features from this work. This experiment is the same as
the illustrative example from section 3.1, where a path de-
lay mismatch map is generated based on X-Y coordinates.
In addition to using the X-Y coordinates as features, we use
20 random variables that have no impact on the delay differ-
ence. Once a model is generated using the SVR algorithm,
we rank the features based on importance.

Paper 14.2 INTERNATIONAL TEST CONFERENCE 8

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21

Random Features

Feature Number

F
ea

tu
re

 Im
p

o
rt

an
ce

(a) Old Method

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21

Feature Number

F
ea

tu
re

 Im
p

o
rt

an
ce

Feature 1 x-coordinate

Feature 2 y-coordinate

Random Features

(b) New Method

Figure 8. Ranking of X-Y coordinates plus 20 ran-
dom features using Old and New ranking methods.
Where feature #1 and #2 are X and Y respectively.

Figure 8(a) and (b), show the ranking results using the
Old and New method, respectively. In both figures, fea-
ture number 1 and 2 correspond to the X and Y coordinates.
When using the Old ranking method,Figure 8(a), the X and
Y coordinates are ranked as the two least important features.
This result is obviously wrong, because the delay difference
was generated using only these two features. Notice that the
new ranking method,Figure 8(b), ranks the X and Y features
correctly as the two most important features.

To summarize, both ranking methods have compara-
ble accuracy for occurrence-based features sets, however
the Old method does not work when using descriptive-
based features. This is because the Old method [5] uses a
weighted sum of the feature values to calculate importance.
When higher feature values do not translate into more un-
certainty (i.e. X-Y location, temperature, etc), then this im-
portance metric does not make sense. The New ranking
method is generalized enough to work with any feature set.

8 Industrial Experiment
In this section we will show the effectiveness of our di-

agnosis approach on an industrial ASIC design. The de-
sign has 220k cells based on a 90nm technology node. The
die area for the design is 1170.28um x 1170.28um. To ex-
tract all the features that we listed in section 4, we needed
access to the following: 1)Design netlist, 2)Lef/Def files,
3)Standard cell timing library. Using the design netlist and
Lef/Def files, parasitic extraction was conducted to obtain
the interconnect RC’s (SPEF file) used by an STA tool for
path delay prediction. Using a typical corner timing library
the STA tool analyzed 4108 of the most critical paths, where
each path was composed of 15 to 30 cells. This design uses
a standard cell timing library consisting of 134 cells.

All cell-based features were extracted from the timing
report and timing library. These features included: Cell
type, cell output transition, cell %Load capacitance and ac-
tive transistor type. The interconnect-based features and
location-based features were extracted from the timing re-
port and the Def file. These features included: Number
of metal layers and vias that each stage of a path traverses
through, the path area and X-Y coordinates for each path.
As previously mentioned this work does not analyze any

dynamic effects, so no dynamic features were extracted. Fi-
nally, we approximated each paths margin as 10% of the to-
tal delay from the timing report. This values was used as a
feature to analyze the impact of margin on delay mismatch.

In order to analyze the effectiveness of our approach we
conducted controlled experiments. Similar to section 7, we
associate a systematic and a random timing deviation for
each feature. Monte-Carlo simulations are performed on
the 4108 paths using the original timing library along with
the systematic and random deviations to create silicon mea-
surements. For some paths multiple samples were created
to simulate having the same paths measured on multiple die.
To differentiate them, each die is arbitrarily given a die in-
dex value. To summarize, there is a potential total of 577
extracted features for this design (134 cells * 2 high/low
transitions * 2 normal/extreme load + 2 transistor types +
2 X-Y coordinate + 1 path area + 10 metal layer bins + 25
via bins + 1 die index = 577). We say potential number of
features because not all cells, cell transitions and cell loads
appear in the 4108 paths being analyzed.

0

10

20

30

40

50

60

70

80

-0.003 0.009 0.020 0.032 0.044 0.055 0.067

Normalized systematic deviation

N
u

m
b

er
 o

f
F

ea
tu

re
s

Figure 9. Systematic delay deviation
Figure 9, shows the systematic delay deviation for all

features in the design. In this section all delay values are
normalized to the maximum predicted path delay value.
Notice that the systematic delay deviation is sampled on a
exponential curve. Based on our research this seems to be
the most realistic timing mismatch model, where most fea-
tures have very small timing deviation and only a few have
a large deviation on silicon.

Table 3. The number of the top i true ranking features our
SVM-ranking method found

Top i true rank, i = 1 2 3 4 5 6 7 8 9 10
SVM rank j of the top i, j = 0 2 2 2 3 4 5 6 7 7

Table 3, shows the number of the top i true largest deviat-
ing features (consisting of both occurrence- and descriptive-
based) that our proposed diagnosis methodology found,
where i = 1,2, ...,10. For example, the column i = 1, shows
whether our method correctly ranked the true largest de-
viating feature. Because the value is 0, it shows that our
method incorrectly ranked a different feature as the most
important. Column i = 2, shows how many of the top 2
true largest deviating features where ranked by our method,
and so on. Notice that 7 of the top 10 true largest deviation

Paper 14.2 INTERNATIONAL TEST CONFERENCE 9

features where identified correctly (column i = 10). To un-
derstand why three features are missed, we analyzed their
occurrences and discovered they only appear 1,25 and 40
times in the dataset. To give a perspective most other fea-
tures appeared hundreds to thousands of times. Hence, one
can hypothesize that because there are fewer paths utilizing
these features, we do not have enough information in the
path dataset to quantify the importance of the features and
as a result they are ranked lower.

In summary, the ranking result depends on the distribu-
tion of the timing deviation associated with the features.
When a few features have a large deviation it is easier for the
methodology to identify them. In practice, these features
are a guide to fixes of the timing model or design method-
ology. It is likely that one can only afford to fix a few of
these due to the time and engineering cost. Hence, from the
perspective of fixing, the top 10 features do not have to be
perfect. For example, if one can identify 7 out of 10 features
with large timing deviation, fixing these 7 can still greatly
improve design-silicon timing correlation. In the next sec-
tion we will reference some work done in the area of silicon
repair and conclude this work.

9 Conclusion
One may wonder how to improve a design once prob-

lematic features are identified. Fixing design involves an
entirely different set of techniques that are out of the scope
of this paper. In the literature much work has been done
proposing ways to improve design [19, 31, 32, 33, 34, 35,
36, 37, 38]. Those techniques can be more effectively uti-
lized if the most critical issues are identified first. While
many potential issues have been brought into attention as
technology advances, it is usually difficult to assess, among
all these potential issues and for a particular design and/or
design methodology, which demand the most attention. The
proposed methodology provides a solution to this problem
and hence, facilitate effective allocation of design resources
to go after those most relevant issues.

References
[1] K. Killpack, et al,” ”Analysis of Causation of Speed Failures in a

Microprocessor: A Case Study,” To appear in IEEE Design & Test
Special Issue on Silicon Debug and Diagnosis 2008.

[2] C. Bittlestone, A. Hill, V. Singhal, Arvind N.V, ”Architecting ASIC
Libraries and Flows in the Nanometer Era,” In DAC 2003.

[3] Li-C. Wang, Pouria Bastani, Magdy S. Abadir, ”Design-silicon tim-
ing correlation — a data mining perspective,” In DAC 2007.

[4] P. Bastani, B. Lee, L. Wang, S. Sundareswaran, M. Abadir, ”Analyz-
ing the risk of timing modeling based on path delay tests,” ITC2007.

[5] P. Bastani, et al, ”An Improved Feature Ranking Method for Diagno-
sis of Systematic Timing Uncertainty,” VLSI-DAT 2008.

[6] P. Bastani, N. Callegari, L. Wang, M. Abadir, ”Statistical Diagnosis
of Unmodeled Timing Effect,” Submitted to DAC 2008.

[7] M. Abramovici, M. Breuer. ”Fault Diagnosis Based on Effect-Cause
Analysis: An Introduction,” In DAC 1980, pp. 69-76.

[8] Y.-C. Hsu and S.K. Gupta. ”A New Path-Oriented Effect-Cause
Methodology to Diagnose Delay Failures,” ITC, 1998, pp. 758-767.

[9] Z. Wang, et al, ”An Efficient and Effective Methodology on the Mul-
tiple Fault Diagnosis,” In ITC 2003, pp. 329-338.

[10] A. Kristic, et al, ”Delay Defect Diagnosis Based Upon Statistical
Timing Models - The First Step,” In DATE 2003.

[11] P. Zuchowski, P. Habitz, J. Hayes, J. Oppold, ”Process and Environ-
mental Variation Impacts on ASIC Timing,” In ICCAD 2004.

[12] S. Nassif, ”Design for Variability in DSM Technologies,” In IEEE
International Symposium on Quality Electronic Design 2000.

[13] S. Nassif, ”Modeling and Forecasting of Manufacturing Variations,”
In International Workshop on Statistical Metrology, 2000.

[14] D. Josephson, et al, ”Debug Methodology for the McKinley Proces-
sor,” In ITC 2001. pp 451-460.

[15] D. Josephson, ”The Manic Depression of Microprocessor Debug,”
In ITC 2002.

[16] W. Huott, et al, ”The Attack of the ’Holey Shmoos’: A Case Study
of Advanced DFD and Picosecond Imaging Analysis,”In ITC 1999.

[17] C. Pryon, et al, ”Silicon Symptoms to Solutions: Applying Design-
for-Debug Techniques,” In ITC 2002.

[18] M. Bass, et al, ”Design Methodologies for the PA 71000LC Micro-
processor,” In Hewlett-Packard Journal, 46(2):23-25 April 1995.

[19] D. Josephson, ”The Good, the Bad, and the Ugly of Silicon Debug,”
In DAC 2006.

[20] T. Thiel, ”Have I Really Met Timing? - Validating PrimeTime Tim-
ing Reports with Spice,” In DATE 2004.

[21] O. Sinanoglu, P. Schremmer, ”Diagnosis, Modeling and Tolerance
of Scan Chain Hold-Time Violations,” In DATE 2007.

[22] N. NS, T. Bonifield, et al, ”BEOL Variability and Impact on RC
Extraction,” In DAC 2005.

[23] U. Narasimha, A. Hill, N. NS, ”SmartExtract: Accurate Capacitance
Extraction for SOC Designs,” In IEEE VLSI Design 2006.

[24] P. Larsson and C. Svensson, ”Noise in digital dynamic CMOS cir-
cuits,” In IEEE J. Solid-State Circuits June 1994, pp. 655-663.

[25] Sanjay Pant, Eli Chiprout, ”Power Grid Physics and Implications for
CAD,” In Proc. DAC 2006.

[26] P. Bastani, K. Killpack, L. Wang, E. Chiprout, ”Speedpath prediction
based on learning from small set of exmaples,” Submitted to DAC’08.

[27] V. Vapnik The Nature of Statistical Learning Theory. Springer 1999.
[28] Nello Cristianini, John Shawe-Taylor. An Introduction to Support

Vector Machine. Cambridge University Press, 2002
[29] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis,

Cambridge University Press 2004.
[30] Leo Breiman, ”Random Forests,” In Machine Learning Journal (45)

pp. 5-32, 2001.
[31] S. Kulkarni, D. Sylvester, D. Blaauw, ”A Statistical Framework for

Post-Silicon Tuning through Body Bias Clustering,” In ICCAD 2006.
[32] M. Najibi, et al, ”Dynamic Voltage and Frequency Management

Based on Variable Update Intervals for Freq. Setting,” ICCAD 2006.
[33] B. Quinton, et al, ”Asynchronous IC Interconnect Network Design

and Implementation Using a Standard ASIC Flow,” ICCAD 2005.
[34] R. Livengood, ”Design for Debug for Silicon Microsurgery and

Probing of Flip-Chip Packaged Integrated Circuits,” In ITC 1999.
[35] Lakshmanan, et al, ”Incremental Dummy Metal Insertion,” US

Patent No. 7,260,803 B2. August 2007
[36] L. Tien, ”Method for reducing layer revision in an engineering

change order,” US Patent No. 7,137,094. November 2006.
[37] K. Chang, I. Markov, V. Bertacco, ”Automating Post-Silicon Debug-

ging and Repair,” ICCAD 2007.
[38] L. Yuan, S. Leventhal, G. Qu, ”Temperature-Aware Leakage Mini-

mization Technique for Real-Time Systesms,” ICCAD 2006.

Paper 14.2 INTERNATIONAL TEST CONFERENCE 10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

