
Functional Test Selection Based on Unsupervised
Support Vector Analysis ∗

Onur Guzey, Li-C. Wang Jeremy Levitt, Harry Foster
University of CA - Santa Barbara Mentor Graphics Corporation

ABSTRACT
Extensive software-based simulation continues to be the mainstream
methodology for functional verification of designs. To optimize the
use of limited simulation resources, coverage metrics are essential
to guide the development of effective test suites. Traditional cov-
erage metrics are defined based on either a functional model or a
structural model of the design. If our goal is to select a subset of
tests from a set of tests, using these coverage metrics require simu-
lation of the entire set before the effectiveness of tests can be com-
pared. In this paper, we propose a novel methodology that estimates
the input space covered by a set of tests. We use unsupervised sup-
port vector analysis to learn such a space, resulting in a subset of
tests that represent the original set of tests. A direct application
of this methodology is to select tests before simulation in order to
reduce simulation cycles. Consequently, simulation effectiveness
can be improved. Experimental results based on application of the
proposed methodology to the OpenSparc T1 processor are reported
to demonstrate the practicality of our approach.

Categories and Subject Descriptors:
B. Hardware, B.6 Logic Design, B.6.3 Design Aids

General Terms: Design, Verification

Keywords: Functional verification, Support Vector, Learning

1. INTRODUCTION
Functional verification continues to be a key bottleneck that drags

time-to-market in a typical design process. Practical functional ver-
ification relies on extensive simulation of directed and/or guided
random tests due to its flexibility and scalability. Although simu-
lation based verification can be very effective, its success in terms
of both total effort spent and final verification quality achieved, de-
pends heavily on the quality of the tests in use.

The effectiveness of tests is often measured through various cov-
erage metrics [1]. A coverage metric is defined based on a model
of the design. If one wants to measure the effectiveness on a set of
tests, these tests are simulated on the model and coverage is mea-
sured based on the simulation result.

More effective tests can achieve higher verification coverage in
shorter time, which save simulation resources. However, generat-
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ing effective tests for complex designs has always been a challeng-
ing problem. Typically, functional test generation falls into one of
three categories:

• Direct tests manually created by designers.
• Constrained-random tests [2] instantiated randomly from bi-

ased and constrained test-benches developed by designers.
• Coverage-directed tests [3, 4, 5] dynamically generated by

an algorithm to achieve higher verification coverage.

In practice, direct and constrained random tests are mostly used.
Direct tests are written to cover corner cases and important features
of a design. Writing direct tests has been a dominant test generation
methodology because these tests may be crucial for verification. In
many situations they can be the only tests that exercise specific cor-
ner cases. This important advantage is partly offset by the amount
of manual effort involved to prepare the tests. Constrained-random
test generation alleviates part of the problem by producing a large
number of controlled random tests where many verification targets
can be fortuitously covered. This reduces the need for direct tests.
However, for complex designs, achieving a required verification
coverage goal even with both approaches can still be very chal-
lenging. As a result, tremendous simulation cycles are spent before
the simulation model of a design can be declared golden.

To reduce the simulation cycles needed for achieving a required
coverage goal, this work takes an approach that is different from
the existing ones. The core of the approach is to be able to estimate
the input space covered by a given set of tests. The result of this es-
timation is a model for the covered space where this model utilizes
only a subset of the tests. Then, instead of simulating the original
set of tests, we use this model to select tests for simulation.

For example, assume that we have a test set T = {t1, . . ., tn}.
Suppose our application is to select a subset of l tests Ts = {ts1,
. . ., tsl} such that Ts gives the most verification coverage. The
naive approach is to simulate the n tests and obtain coverages for
them. Based on their coverages, then one would apply a search
algorithm to find the best subset. In our case, we want to avoid
the simulation. Hence, we need to find an alternative. Figure 1
illustrates this alternative.

Test 2 Test 3
d12 d13Test 1

Similarity 
metric space

Verification coverage space

Figure 1: Defining a similarity metric space

Suppose somehow we can define a function k such that for any
pair of tests ti, tj , k(ti, tj) measures the similarity between them.
This similarity function essentially creates a similarity metric space
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where tests are projected onto. In other words, the input space of
the tests is altered by the similarity estimate function k(), and be-
comes the similarity metric space.

The figure shows a simple example of three tests where test 2 is
more similar to test 1 than to test 3. If we treat this space as a 2-
dimensional Euclidean space and the similarity is measured by the
distance, then we have 1

d12
> 1

d13
.

The key is that we want to define a k such that, if k(test 1, test 2)
> k(test 1, test 3), the space covered by tests 1 and 2 in the actual
verification coverage space will also likely be larger than the space
covered by tests 1 and 3, as shown in the figure. Suppose that we
have such a k function. Then, Figure 2 illustrates the test selection
problem in the similarity metric space.

R

A predefined similarity-metric space

R
R

Find 6 clusters in this spaceA predefined similarity metric space Find 6 clusters in this space

Figure 2: An example to illustrate the idea of selecting important tests
based on relative similarity measures

Suppose we project a set of 21 tests on the similarity metric space
as shown in the figure and our objective is to pick the most impor-
tant 6 tests. The picture illustrates that, by drawing 6 circles with
the same radius R we can cover all 21 tests. We see that all tests
within a circle are more similar to each other than to tests outside
the circle. Therefore, to pick 6 tests, intuitively we would choose
1 test from each circle. And as the picture shows, this test would
be picked closer to the center because it minimizes the average dis-
tance to other points inside the circle.

The problem in Figure 2 can be seen as solving an unsupervised
learning problem [6]. For example, clustering a set of data points is
a typical unsupervised learning problem. In this context, the simi-
larity measure function k is called a kernel function [7]. Therefore,
we see that the alternative to the naive approach described earlier,
can be to solve a kernel-based unsupervised learning problem [7].

Based on the two ideas just described, this work proposes a
pre-simulation methodology to estimate the relative effectiveness
among tests. In this methodology, we first define a kernel function
that computes the similarity of two tests. Then, test selection is car-
ried out by solving a kernel-based unsupervised learning problem.

Figure 3 depicts the overall picture of the work. A test set T1 is
given and unsupervised learning based on support vector analysis
is used to generate a learned model MT . This model captures the
sub-space covered by the tests in T1 (in the similarity metric space).
After this model is generated it can be used as a filtering tool to
screen out those tests that are similar to the tests already in T1. A
reduced set Ts2 is produced. The objective is to have T1 Ts2

achieve a similar coverage as T1 T2.

T
Model MT

U i d

T2 Simulation

Design

Ts2

Unsupervised
learning

T1
modelT1

Kernel function
k (  , )

Domain knowledge
Coverage report

Figure 3: The overall picture of this work

If the proposed method can be used to select l most effective tests
from a large test set, then it can be applied to re-order the tests in the
set. For example, given a set of m tests where m is large, we can

apply the method to select l tests. Then, we can apply the method
again on the remaining m l tests to select a second set of l tests.
This process can iterate and at the end, report an ordered list of m

l
subsets of l tests, ranked by their estimated effectiveness. If the
estimation is accurate, then we can save simulation cycles. If it is
inaccurate and the rank is mostly wrong, then in the worst case, we
just need to simulate the original m tests. From this perspective, we
see that the proposed method can be used in a non-intrusive way.
We note that the learning run time is usually order-of-magnitude
less than the simulation time (see section 5).

For the methodology to be effective, it demands a similarity (ker-
nel) function that can reflect the similarity between the coverages
of two tests. In this work, we will show that the proposed method-
ology allows domain knowledge to be incorporated into the kernel
function k(). This is an important feature of the methodology. The
analogy is that a commercial constrained-random test generation
framework allows a user to incorporate input biases and constraints
(domain knowledge) into a test bench. Our methodology allows
biases and constraints to be put into the kernel function.

It is important to note that the learning algorithm only utilizes the
kernel function as a relative measure rather than an absolute mea-
sure, i.e. to compare if a pair of tests is more similar than another
pair or not. Hence, the exact coverage of a given test on a design
model is unknown until after the test is simulated. This information
is not required and never used in the proposed methodology.

The rest of the paper is organized as below. Section 2 briefly
compares this work to others. Section 3 explains support vector
analysis (SVM) [6] for unsupervised learning. Section 4 discusses
the development of kernel function and how to incorporate domain
knowledge such as constraints and biases into a kernel. Section 5
presents experimental results on OpenSparc T1 processor [12] to
confirm the effectiveness of the proposed approach. Section 6 dis-
cusses applying our method to the test set selection problem rather
than the test selection problem, and Section 7 concludes.

2. COMPARISON TO RELATED WORK
Coverage metrics [1][8] are most related to this work. Various

coverage metrics were proposed in the past, including code cover-
age, structural coverage, FSM coverage, functional coverage, and
design error coverage as categorized in [1]. As mentioned above,
this work is not for measuring coverage. It is for test selection by
analyzing tests in a similarity metric space.

Coverage hole analysis [9, 10] converts a large amount of cov-
erage results into compact information that can be more effectively
utilized to guide the test preparation. Our work, on the other hand,
intends to convert a large amount of tests into a compact set of
tests so that verification efficiency is improved by saving simula-
tion cycles. For improving verification efficiency, a more intuitive
approach is coverage-directed test generation (CDTG).

CDTG techniques dynamically analyze coverage results and au-
tomatically adapt the test generation process to improve the cov-
erage. Some techniques utilize knowledge from high-level spec-
ification [4][5] [8] or restricted symbolic simulation [11] to help
generate target tests. Automatic CDTG is an attractive approach
because it allows test generation to work with coverage metrics to
quickly produce a set of focus tests for achieving a high coverage.

Our work and CDTG techniques should be seen as two orthogo-
nal approaches, although both aim to cut down the required number
of simulation cycles by providing more effective tests. Our work
tries to solve a test selection problem in the input space. The pro-
posed methodology is designed to work independently of a simu-
lation design model. From this perspective, it is similar to a com-
mercial constrained random test generation framework. In both, a
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user is required to supply domain knowledge to the tool. In a con-
strained random framework, this knowledge is in the constraints
and biases. As illustrated in Figure 3 before, in our methodology,
this knowledge is in the kernel.

3. SUPPORT VECTOR ANALYSIS
Suppose we are given a set of m tests T = {t1, . . . , tm}. With-

out loss of generality, assume that each test ti is encoded as a vector
�xi. Therefore, m tests become m vectors X = {�x1, . . . , �xm}. Let
k be a given kernel function k(·, ·) for similarity measurement. For
example, for two vectors �x = (x1, . . . , xn) and �z = (z1, . . . , zn)
the simplest kernel function can be the dot product of the two vec-
tors, i.e. k(�x, �z) = 〈�x, �z〉 =

∑n
i=1 xizi.

For a function k(·, ·) to be an admissible kernel function, the
requirement is that k(�xi, �xj) = 〈�φ(�xi), �φ( �xj)〉 for some mapping
function φ [7]. Hence, φ is the mapping that maps a test from
the original input space into the similarity metric space explained
in Figure 1 before. The standard way is to call it a feature space.
Design of an admissible similarity kernel function will be discussed
in Section 4. For now, we assume that such a k has been given.

Original input space Similarity metric spaceOriginal input space Similarity metric space

xi (xi)

xj

( i)

(xj)( j)

k(xi, xj)  =  (xi), (xj) 
Figure 4: An admissible similarity kernel function k(�xi, �xj) corre-
sponds to first mapping �xi, �xj to �φ(�xi), �φ(�xi) and then computing the
dot product 〈�φ(�xi), �φ(�xi)〉. in the similarity metric space.

3.1 The sub-space covered by the test set T

Our goal in the support vector analysis is to establish the bound-
ary of the sub-space in the original input space such that this sub-
space includes most of the tests. Figure 5 illustrates the idea.

Similarity metric space Original vector space

Figure 5: Find a hypersphere to include most of the points in the sim-
ilarity metric space and the hypersphere corresponds to an irregular-
shape region in the original input space

To find such a region in the original input space, one tries to
find the smallest hypersphere in the similarity metric space that in-
cludes most of the points. In a 2-dimensional space, a hypersphere
is a circle. A hypersphere in the similarity metric space then corre-
sponds to an irregular region in the input space. This irregularity is
implicitly dictated by the similarity kernel function k.

To see why we include most of the points instead of all points,
observe the two circles in the similarity space. If we want to include
all points, a much larger circle is required. The problem is that a
larger circle contains more space where there is no point falling into
it. Hence, in the example, the more appropriate way is to treat the
rightmost point as an outlier and find the smallest circle to include
all other points. Suppose the smaller circle in the similarity space
can be represented by a model S(�φ(�x)). Given a new point �x we
can compute S(�φ(�x)) to decide whether it is inside the region or

outside. If it is inside, we consider it to be similar to the points used
to derive the model, i.e. it is similar to the tests in T if the model is
built based on T . Otherwise, it is not similar to those points.

A less complex model A more complex modelA less complex model A more complex model
:Support vectors : Non-support vectors :Outliers

Figure 6: The kernel k defines the complexity of a model in the origi-
nal vector space. A more complex model uses a larger number of SVs

As mentioned above, the shape of the region is decided by the
kernel k. To define a region, a number of support vectors (SVs)
are used. As shown in the Figure 6, a more complex (or irregular)
region requires a larger number of SVs to define the boundary.

3.2 The equations
Given m vectors X = {�x1, . . . , �xm} and the kernel k(), the

support vector model takes the form:

S(�x) = R2 −
∑

∀i,j

αiαjk(�xi, �xj) + 2
∑

∀i

αik(�xi, �x)− k(�x, �x) (1)

For each �xi, an αi is computed. Only SVs have non-zero αi.
Hence, non-support vectors are not used in the model. The term∑

∀i,j αiαjk(�xi, �xj) −2
∑

∀i αik(�xi, �x) + k(�x, �x) can be seen
as a weighted average of distance squares between �x and all SVs.
The weights are decided by the alpha’s. In the similarity metric
space, R is the size of the radius of the hypersphere. S(�x) ≥ 0
means that �x is inside the region. Otherwise, it is outside.

S() is found by solving a quadratic optimization problem us-
ing the Lagrangian method. Therefore, each αi is nothing but the
Lagrangian multiplier for �xi. In the following, we show how to
formulate the problem of finding the smallest hypersphere to in-
clude most points, into a quadratic optimization problem. We note
that for support vector analysis, efficient algorithms are available
for solving the optimization problem [7]. Hence, the formulation is
only for explanation of the concept, not for implementation.

Given a set X of m points, the smallest hypersphere containing
X is the point �c such that it minimizes the distance r from the
furthest point. To allow a point falling outside, we associate each
point �xi a slack variable ξi.

ξi = max(0, ‖�c − �φ(�xi)‖2 − r2) (2)

Hence, ξi is the distance to the boundary of the hypersphere if
�xi is outside. Otherwise, ξi = 0.

Let R be the size of the radius of the hypersphere. The optimiza-
tion problem is formulated as the following.

minimize R2 +
∑m

i=1 ξi

subject to ‖�φ(�xi) − �c‖2 ≤ R2 + ξi

ξi ≥ 0, for i = 1 . . . m

With this formulation, the model leaves at least one outlier out-
side [7]. To solve it, we obtain the Langragian L(�c, R, �α, �ξ) =

R2 +

m∑

i=1

ξi +

m∑

i=1

αi[‖�φ(�xi)− �c‖2 −R2 − ξi]−
m∑

i=1

βiξi (3)

Differentiating L with respect to the primal variables in the orig-
inal optimization formulation, we obtain a set of constraints. Sub-
stitute them into the Lagrangian, we obtain the dual problem for-
mulation as the following.
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maximize L(�c, R, �α, �ξ) = L(�α)
=

∑m
i=1 αik(�xi, �xi) − ∑m,m

i,j=1,1 αiαjk(�xi, �xj)

subject to
∑m

i=1 αi = 1 and 0 ≤ αi ≤ 1, for i = 1 . . . m

It is interesting to observe that in the dual problem, the only vari-
ables to optimize are α’s. Moreover, the mapping function �φ() dis-
appear. Instead, only the kernel function k() is used. What this
means is that, as long as we can define a similarity kernel function
k, we do not need to know what the mapping function �φ() really is
because it is never used explicitly in the support vector analysis.

4. KERNEL FUNCTIONS
As illustrated in Figure 4 before, not all functions can be used

as similarity kernel functions. A kernel function k has to satisfy
the condition that k(�xi, �xj) = 〈�φ(�xi), �φ( �xj)〉 for some mapping
function φ. This condition can be checked by the Mercer theorem
[6] that basically says that k() is a kernel function only if the ker-
nel matrix Mk = |k(�xi, �xj)|m,m

i,j=1,1 is positive semi-definite. A
positive semi-definite matrix has all its eigenvalues greater than or
equal to zero. We note that Mk also has to be symmetric.

In general, suppose we come out with any similarity measure
function k′(). Since it is easy to define such a function whose ker-
nel matrix Mk′ is symmetric, the symmetry requirement is usually
not the concern. If Mk′ is positive semi-definite, then it is a ker-
nel. Suppose it is not positive semi-definite. Then, we can build a
kernel function by taking k(�xi, �xj) =

∑m
l=1 k′(�xi, �xl)k

′(�xl, �xj).
Then, we have Mk = M2

k′ , i.e. Mk is the matrix square of another
matrix. We note that the square of a symmetric matrix is always
positive semi-definite because its eigenvectors remain unchanged
but the corresponding eigenvalues are each squared (hence ≥ 0).
Therefore, k() becomes a kernel function.

In practice, the generic way to make a kernel function described
above is not used often because it is more complex to compute
k(). Two commonly used kernels are the dot product and Gaus-
sian kernel. Given �x = (x1, . . . , xn) and �z = (z1, . . . , zn), the
dot product kernel is k(�x, �z) = 〈�x, �z〉 =

∑n
i=1 xizi, as mentioned

before. The Gaussian takes the form k(�x, �z) = e−g‖�x−�z‖2
where

|�x − �z‖2 =
∑n

i=1(xi − zi)
2. g is a parameter that decides the

Gaussian width that scales the similarity measure. Notice that for
the two basic kernels, one uses the product xizi as the base simi-
larity measure and the other uses the difference |xi − zi|.

Between the two basic kernels and the generic method, we would
like to have a kernel that can take design related domain knowledge
into account. This can be accomplished by applying the rules for
making a kernel:

Combination If k1() and k2() are kernels, then their weighted av-
erage k() = w1k1()+w2k2() is also a kernel. Furthermore,
k() = k1()k2() is a kernel [7].

Dataset manipulation Let X1 be the data matrix given for the
analysis. Suppose we manipulate the data to obtain a new
matrix X2. Let k1() and k2() be two kernels and k1() is
applied to X1 (kernel matrix M1) and k2() is applied to X2

(kernel matrix M2). Then, k() = w1k1() + w2k2() (kernel
matrix M ) is also a kernel. This is because the symmetric
matrix obtained from adding two positive semi-definite sym-
metric matrices is also positive semi-definite.

Explicit mapping φ If we can establish an explicit mapping φ,
then the corresponding kernel is just the dot produce defined
in the φ space. By definition, that is a kernel.

4.1 Constraints and biases in a kernel
Before we show how constraints and biases can be put into a

kernel, we need to explain how one may encode a test into a vector

for support vector analysis. Given a test set T = {t1, . . . , tm},
we need to first convert each test ti into a vector �xi. Without loss
of generality, assume that each test ti is a bit vector (bi1, . . . , bil).
Each bit bij takes three values, 0, 1, and unknown X. We note that ti

can be a multi-cycle input stimulus. Suppose the number of signals
is l1 and the number of cycles is l2, we have l = l1l2.

First we consider how to measure the similarity between two
bits. Recall from above discussion that the similarity in the two
basic kernels can be measured either by product or by difference.
For convenience, we use *-* to denote the similarity of two bits
where * can be one of the 0,1,X.

Suppose we desire an encoding that allows dot product and Gaus-
sian kernel to behave similarly (This may not be true with any en-
coding scheme). For each bit in a test, we can use two variables
to encode it. Each of these variables is called a feature. We use
(0,

√
2) to encode logic 0, (

√
2, 0) to encode logic 1, and (1, 1)

to encode X. With this encoding, we see that using the difference
(where the absolute differences of the two numbers are summed)
0-0, 1-1, X-X all give 0. 0-X and 1-X give 2−√

2. 0-1 gives 2
√

2.
Using the product, 0-0, 1-1, X-X all give 2. 0-X and 1-X give

√
2.

0-1 gives 0. We observe that the relative similarity measures be-
tween using the difference and using the product are consistent in
the sense that if k( �x1, �x2) < k( �x1, �x3) is true with k being the dot
product, replacing k with the Gaussian kernel would not change the
relation. Note that with the encoding, 0-X and 1-X are considered
less similar than that having the exact same two values.

With the encoding, each test ti is encoded as a vector �xi =
(xi1, . . . , xin) where n = 2 ∗ l. Assume that we want to put a
constraint into the kernel. For convenience, we use b1, . . . , bl to
denote the l input signal variables. A constraint can be viewed as
a logic equation based on a subset of the input signal variables. In
the 3l logic space (0,1,X), it defines a sub-space. By putting a con-
straint inside a kernel, we want the similarity measure inside this
sub-space to be different from that outside.

Suppose we want tests inside the sub-space to be considered
more similar with each other than with tests outside. The purpose
of this can be that we want more tests to be selected from outside
the sub-space. The left example in Figure 7-(a) shows how this can
be done by modifying the data matrix.

# f f t# of features n
Feature variables defining the constraint

Feature variables to be weighted
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 m All vectors not satisfying
the constraint:
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 “

Z
”

by
 “

Z
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Z
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All vectors satisfying the constraint 

Replaced by Zunchanged

unchanged

Figure 7: Putting constraints and biases into kernels by manipulating
the data matrix X used to encode the test set T

Basically, given a data matrix, there are vectors that satisfy the
constraint and vectors that do not. For those that do, we replace,
with a special symbol Z, the values of all features that are not used
in the definition of the constraint. The similarity of Z-Z is enforced,
in the kernel computation, to be the highest value (most similar).
In addition, the similarity of Z-* is enforced to be the lowest value
(most dissimilar). After this modification, the kernel would inter-
pret all vectors satisfying the constraint more similar to each other
and also as a group more dissimilar to the rest (because Z is most
dissimilar to all other values). During support vector analysis, dis-
similar tests will more likely be selected, resulting in more selected
tests from the vectors that do not satisfy the constraint.

Let k1() denote the kernel computation by applying one of the
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basic kernels to the original data matrix. Let k2() denote the kernel
computation on the modified dataset. We then let our final kernel to
be k() = k1() + wk2() where w 1. By using a large weight w,
we achieve two things: (1) Those vectors satisfying the constraint
are considered to be more similar. (2) Among them, they can still
be dissimilar, decided by the k1().

Suppose we want tests inside the sub-space to be considered
more dissimilar with each other than with tests that are outside.
The purpose of this can be that we want more tests to be selected
inside the constrained sub-space. In this case, we just move Z to the
upper right box in the example. Then, all vectors satisfying the the
constraint would be considered more dissimilar. As a result, more
tests will be selected from the vectors satisfying the constraint.

The right example in Figure 7-(b) shows how to put more weight
on some variables. Again we modify the data matrix by replacing
with Z, all entries in all columns whose corresponding feature vari-
ables are not considered. In this way, these feature variables do not
participate in the kernel calculation. Then we use the same trick as
before to make a kernel take the form k() = k1 + wk3().

In general, one can incorporate any number of constraints and
biased schemes on the variables, into the kernel. Suppose we have
u constraints and v biases. The resulting kernel would look like:

k() = k0() + w1k1() + + wuku() + + wu+vku+v() (4)

If one have no further knowledge, a single largest weight can
be assigned to all kernels from the constraints, followed by a large
weight assigned to all kernels from the biases.

We note that the encoding scheme and the methods to manip-
ulate the data matrix are examples. In general, one can design a
different scheme or make a different kernel to better suit the appli-
cation. It is also important to note that Figure 7 is for illustration
purpose. In the implementation, the computation should take place
on the fly when the value k(�xi, �xj) is actually needed. Hence, the
implementation does not need to explicitly modify the data matrix
before the support vector analysis is carried out.

5. EXPERIMENTAL RESULTS
OpenSPARC T1 is a 64-bit open-source microprocessor devel-

oped by SUN Microsystems[12]. For the experiments, we selected
the execution unit. We assume that tests are applied at the input
boundary of this unit in other words, we are performing unit-level
verification. Execution unit (EXU) consists of around 10000 lines
of RTL code and has 600 input bits. It features four arithmetic sub-
units, control blocks and a large number registers. EXU’s internal
integer register file features 128 registers.

For our experiments, we also create a constrained random test-
bench for the execution unit. We bias the inputs based on the
statistics seen in the regression test sequences that are included in
OpenSPARC’s open-source release.

5.1 An illustrative example – ALU
Execution unit includes an Arithmetic Logic Unit (ALU). This

block has a total of 335 input bits including 5 64-bit word-level
inputs. We generate block level constrained random tests that ex-
ercise different logical and arithmetic operations. For the experi-
ment we generate 300 tests that perform the logical AND opera-
tion. We collect input values during simulation to train a support
vector model S(). After obtaining the model, we randomly gen-
erate additional tests covering all possible operations including the
AND operation. For each of the additional tests, we use the model
S() to compute its similarity value. Result is shown in Figure 8.

A higher S() value means that the test is more similar to the orig-
inal tests used to train the model (AND operation tests). As shown
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Figure 8: Using ALU to illustrate the result of support vector learning

in the figure, the AND operation tests from the additional tests all
show up with high S() values. AND operation shares certain input
combinations with the other logical operation. As a result, we see
that other logic operation tests have medium S() values. Then at
the bottom, there are other tests whose characteristics are quite dif-
ferent from the AND operation (arithmetic operations, etc.). Their
S() values are generally low. This simple example demonstrates
that indeed if a group of tests are similar, support vector analysis is
able to derive a good model to represent them.

5.2 Test filtering
To demonstrate how a verification engineer might utilize sup-

port vector analysis to verify the ALU block, we develop a simple
scenario for the experiment. In this scenario our objective is to ex-
ercise as many unique operations and internal flag combinations as
possible.We select 3-consecutive ALU operations and their corre-
sponding internal flags as our targets. We use 6 different operations
and 2 flags that are related to the overflow and zero conditions of
the internal signals. For example, a 3-cycle test may result in opera-
tion and internal flag combination {(AND,No Overflow,Not Zero),
(ADD,No Overflow,Zero), (XOR,Overflow,Not Zero)}. The target
coverage metric is the state coverage between these points over 3
cycles for a total of 243 possible states.

Constrained-random verification enables us to use bias values to
adjust our test generation scheme by giving higher priority to cer-
tain combinations that might help to achieve the verification objec-
tive. For this scenario, since we are interested in generating zero
and overflow conditions, we want our word-level inputs to take the
value zero or a high value more frequently. In constrained-random
verification this can be achieved by increasing the possibility of
inputs taking those values. The corresponding adjustment for sup-
port vector analysis can be adding new Boolean variables for ev-
ery word-level input in our design. These variables are only set
to 1 if their corresponding input was zero or higher than a certain
value. These variables can then be weighted differently to adjust
their importance. By doing so we incorporate the importance of
these values similar to the way we would with bias values. Using
these additional variables then lead to a better kernel function and
ultimately a more desirable support vector model.

To test this approach, we randomly generate 2000 3-cycle tests
and train a support vector model S(). Then we simulate two sepa-
rate test-benches, the first test-bench uses S() to filter out tests that
are potentially redundant(inliers) and the second test-bench is the
original one without the filtering. The filtered tests are discarded
without being simulated to save simulation time. Figure 9 shows
the state coverage results achieved by these two test-benches. Fil-
tering removes a large number of redundant tests and achieves very
similar final coverage result with far less simulation effort. For this
experiments, simulating the initial 2000 cycles took 32 seconds
while the SV model generation took 0.26 seconds and the model
had 164 support vectors. It should be noted that the model contains
much fewer tests than the initial 2000 tests used for training the
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model. This indicates redundancy in the initial test set.
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Figure 9: Effect of test filtering on the verification efficiency

5.3 Test selection
For this application we use a constrained random test-bench to

produce 30000 tests of length 3 for the execution unit. We take
the first 5000 tests to train a support vector model. We then order
the remaining 25000 tests in two ways: (1) Apply the outliers first,
followed by the rest of the tests (2) Apply the inliers first, followed
by the rest of the tests. We also simulate the original 25000 tests
without changing their ordering. The simulation results are plotted
in Figure 10. By the fact that the coverage curve from the outliers
stay above the curve from the original tests, and the coverage curve
from the inliers stay below, the effect of using S() can clearly be
observed, which implies that S() has indeed learned some charac-
teristics of the first 5000 tests.

For this experiment, we use the Gaussian kernel with two simple
types of domain knowledge. For a word-level input, say a 32-bit
input, we give a much higher weight to the 5 most significant bits
and the 5 least significant bits. Moreover, if we know that a set
of inputs should be one-hot, then we make all the tests falling into
the non-one-hot space to be considered very similar, i.e. the tests
satisfying the one-hot constraint are more dissimilar. This is to
collapse the non-one-hot space so that tests are very unlikely to be
selected from that space.
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Figure 10: Result to show that outlier tests are more effective

6. TEST SET SELECTION
Suppose we are given a collection of test sets {T1, . . . , Tj}. Af-

ter T1 is simulated, suppose we want to find among T2, . . . , Tj

which one can provide the highest additional coverage. This is a
test set selection problem. This problem is different from the test
selection problem because each set is selected as a whole. Hence,
this problem require us to compare the similarity between two test
sets as a single measurement.

Suppose by learning from all tests in T1, we obtain a support
vector model S(). Our strategy is use S() to identify the number
of outliers in the remaining sets. We use this number to rank the
sets. For the experiment, we select 10 unit-level regression test
sequences for the execution unit. After learning from one of them,
we use the model to find the number of outlier tests in the remaining
nine. We then simulate the one used in the learning, followed by
each one of the nine test sets. These nine simulation runs produce

nine coverage gain values by the nine sets. Figure 11 correlates the
outlier number to the coverage value.

We see that the correlation is good for 7 out of the 9 sets. The test
set with the highest number of outliers also has the highest coverage
value. However, there are two sets with small number of outliers
but can provide high coverage increase. As we examine these two
sets more carefully, we found that they are for injecting recover-
able errors to the data so that the error correction logic can take
effect. Some of the input values on those tests contain parity errors
and those errors trigger certain part of the design that has not been
activated before. Because we did not have this knowledge when
running the experiment, this domain knowledge is not incorporated
into the kernel. Hence, the support vector analysis failed to detect
them as special tests that should be considered as very dissimilar to
all other tests.
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Figure 11: Outlier number correlates to coverage gain

7. CONCLUSION
This paper proposes a general framework, based on kernel-based

support vector analysis, to select functional tests for improving sim-
ulation efficiency. We describe how domain knowledge can be put
into a kernel function to allow the kernel-induced similarity met-
ric space to correlate better with the actual verification coverage
space. With limited domain knowledge, we show the effective-
ness and potential of our approach through various applications like
test filtering and test set selection. Experiments were done using
OpenSPARC units that are realistic and complex designs. We plan
to extend the experiments to other units where temporal correlation
among inputs are critical for exercising the unit. An example is the
instruction fetch unit where results will be reported in the future.
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