
Statistical Analysis and Optimization of Parametric Delay Test ∗

Sean H. Wu, Benjamin N. Lee, Li-C. Wang
Department of ECE, UC-Santa Barbara

sean,benlee,licwang@ece.ucsb.edu

Magdy S. Abadir
Freescale Semiconductor, Inc.

m.abadir@freescale.com

Abstract
In this work, we present using Random Forests statistical

learning to analyze post-silicon delay test data. We intro-
duce the concept of parametric delay test as a new perspec-
tive for extracting more information from delay test. First,
a methodology for outlier identification is presented to aid
defect characterization of initial sample chips. Second, a
methodology for production test is presented, including au-
tomated pattern-set reduction analysis. Finally, a strategy
for adaptive test is presented.

1 Introduction
Delay testing faces a new set of challenges as main-

stream production continues to move into deep-submicron
process technologies. Specifically, subtle small delay de-
fects will increasingly escape traditional pass/fail delay test
methodologies and may cause reliability problems in the
field. Due to advances in automated test equipment (ATE)
and on-chip clock generation, at-speed and faster-than-at-
speed test can offer increased screening power. However,
with these new test capabilities, comes an enormous vol-
ume of generated test data and also a larger array of choices
that test engineers must face. In this work, we introduce
methodologies for automatically analyzing post-silicon de-
lay test data and optimizing delay test. These methodolo-
gies are independent of pre-silicon ATPG, operating purely
in the post-silicon phase of the test engineering effort.

1.1 Evolution of Delay Test

For many years, structural delay test methodology has
consisted of applying test patterns that have been generated
by ATPG using a fixed test clock. Steadily, the speed of
delay test has increased, in an effort to decrease the slack.
Figure 1 illustrates the situation. At the top of the figure,
a slow-speed test clock cycle is shown. In the past, ATE
limitations forced this test-clock to be quite slow relative
to the rated-speed of the circuit under test. In determining
how to fail chips, delay test inherited a hard pass/fail rule
from stuck-at logical tests: if any test pattern fails at the

∗This work was supported in part by National Science Foundation,
Grant No. 0541192 and Semiconductor Research Corporation contract No.
2007-TJ-1585

test clock, fail the chip. This was well justified since the
tests were occurring at such a slow speed. If any test pattern
failed, it implied the presence of a gross delay defect.

Sorted Path Distribution
D

el
ay

At-Speed

Faster-Than
At-Speed

Slow-Speed

Timing Uncertainty

S
la

ck

Figure 1. Delay Distribution and Clock Cycle Time

As advanced design-for-test techniques were employed
and faster ATE became available, at-speed testing became
possible. Shown as the middle clock cycle in Figure 1, at-
speed test moved the test clock cycle time much closer to
the critical path delay, reducing the slack interval so smaller
defects could be captured. Timing-aware ATPG tools could
be employed to generate tests that would attempt to propa-
gate faults through longer paths. The test clock setting be-
came more important now, as setting the clock too fast could
induce overkill. Thus, the timing-behavior of test patterns
would have to be validated via simulation. To be even more
confident of the test clock settings, batches of known-good
chips could be analyzed to find the optimal test clock with
a percentage guard-band applied to pad the test clock.

Even at-speed testing is insufficient for capturing small
defects on non-critical paths. In response, commercial
ATPG tools have included faster-than-at-speed test gener-
ation. In Figure 1, a faster-than-at-speed clock cycle is
shorter than the more critical paths. An example faster-than-
at-speed test methodology would mask the responses from
these more critical paths. The more critical paths would
then have been covered with the at-speed clock. However,
with increased timing uncertainty due to process variations,
cross-talk and IR-drop, it is harder to trust pre-silicon tim-
ing models that ATPG and simulation tools use. Validat-
ing these test-patterns via simulation may not be sufficient,
so increased burden is placed upon the test engineer in the
post-silicon phase to validate patterns on known-good die
and to carefully select test clocks.

Paper 23.1
1-4244-1128-9/07/$25.00 c©2007 IEEE

INTERNATIONAL TEST CONFERENCE 1

1.2 Changing the Rules of Delay Test
In the traditional pass/fail testing methodology, once the

test engineer receives the test pattern set, their main concern
is validating the test patterns and finding the best test clock.
To avoid overkill, the test engineer may throw out problem-
atic patterns and slow the test clock down (guardbanding).
Unfortunately, both these actions result in reduced screen-
ing capability. Another way to view this is that by treating
delay test in this manner, overkill is minimized with little
regard to test-escapes. As the number of test-escapes due to
delay defects increases, ignoring test-escapes in this manner
will make less sense economically. Especially since the cost
of a test-escape is usually more significant than an overkill.
A different perspective is needed to better manage the trade-
off between overkills and test-escapes.

1.3 Parametric Delay Test
The perspective that each delay test pattern is a pass/fail

test has been inherited from stuck-at fault logical testing.
The truth is, delay tests patterns are not pass/fail tests. De-
lay tests should really be seen as measurements more sim-
ilar to that of a parametric test. At the lowest resolution, a
pattern is applied at a single test clock - and the result is a
rough measurement of whether the maximum pattern fre-
quency is greater than the test clock frequency. For a higher
resolution measurement, more clocks can be used (perhaps
in a binary-search) to more accurately gauge the maximum
pattern frequency. There is no fundamental reason the re-
sult of a single measurement must lead directly to passing or
failing the chip. Instead, it makes sense to consider the col-
lection of measurements, or delay test signature, as a whole.

The idea of a delay test signature is that it will expose
a spectrum of chip behaviors. It is key to design delay test
such that the measured delay test signatures have a maximal
amount of information.

>

>

>

>

>

>

>

>

...

A

>

>

>

>

>

>

>

>

...
B

>

>

>

>

>

>

>

...
C

<

1

2

3

4

5

6

7

8

(a) @600Mhz

>

>

>

>

>

>

...

A

>

>

>

>

>

>

...

B

>

>

>

...

C

<

<

<

< < <

<

<

<

(b) @800Mhz

>

>

>

>

>

...

A

>

>

>

>

>

...

B

>

>

...

C

<

<

<

M M M

M M

M M M

M

(c) Masked

Figure 2. Single Clock Delay Test Signature

In Figure 2 a-b, three parts are shown with their sig-
natures from an at-speed clock and a faster-than-at-speed
clock. The signatures are a vector of comparative measure-
ments associated with the test patterns for each part. The

‘>’ and ‘<’ symbols indicate passing and exceeding the
test clock respectively. Intuitively, the at-speed signature in
Fig. 2 a) is not as informative as the faster-than-at-speed sig-
nature in Fig. 2 b) as there is no patterns distinguishing from
parts A and B. Assume that the ATPG tool cannot guaran-
tee that patterns 3, 6 and 8 will meet the faster clock speed
on all “good” chips, in a traditional methodology, these pat-
terns would then be masked so the standard pass/fail method
could be used (Fig. 2 c). However, by masking these pat-
terns, the information is lost on how part A and B are dis-
tinguished. In our work, we will demonstrate there is an
advantage in utilizing the full signature even when limited
to a single test clock.

Higher resolution delay test signatures can be obtained
by using multiple test clocks to search for the maximum
passing frequency of each test pattern, providing a rough
measurement of a test pattern’s delay. In Figure 3, the power

0

20

40

60

80

100

0 2 4 6 8 10

Test Pattern

N
o

rm
.

D
e
la

y
 %

Marginal
Good

Failure Threshold

Figure 3. High Resolution Delay Test Signatures
of higher resolution delay test signatures is shown. In this
example, several test patterns’ measured delays for a good
die and a marginal die are shown relative to a traditional
at-speed test clock cycle. A single at-speed clock cannot
identify the marginal die since each pattern “passes” de-
spite many of the patterns being near the threshold. Using
the simple pass/fail rule for each high-resolution measure-
ment individually is insufficient. To properly capture the
marginal chip, it is necessary to use all the measurements as
a whole in a more complicated decision rule. Because this
rule will necessarily be more complicated, the analysis to
produce the rule must be automated.

1.4 Delay Test Signature Analysis
Automated delay test signatures analysis can be useful in

two phases of the post-silicon test effort. Before production
ramp-up, delay test signatures can be analyzed to identify
outlier parts that may be interesting to study in detail for
defect characterization. This is similar to outlier analysis
for IDDQ measurements, as it is difficult to know what ex-
actly to expect pre-silicon, making the post-silicon analysis
more critical. During this phase, since the number of chips
is limited, higher resolution delay test signatures with more
test patterns can be used. For production testing, lower res-
olution delay test signatures should be gathered, requiring
as few test clocks as possible, and using a minimal set of

Paper 23.1 INTERNATIONAL TEST CONFERENCE 2

patterns. The key objective is to create a function that maps
the lower resolution test signature to the pass/fail decision.
Statistical learning techniques are well suited for the analy-
sis required in both phases.

1.5 Role of Statistical Learning

Statistical learning has been applied in many fields in
which there is uncertainty in the systems at work but there
is a body of empirical data that can be analyzed. Statistical
learning is employed to make accurate predictions in ap-
plications such as medical diagnosis and financial markets.
For delay test analysis, we accept that pre-silicon ATPG
tools may not accurately model process variation, crosstalk,
IR-drop effects, etc. Additionally they will also not have an
accurate picture of the delay defect distribution. However,
via automated testing, we can collect a wealth of data from
initial sample chips. This mix of modeling uncertainty and
available empirical data makes statistical learning perfect
for analyzing of delay test signatures .

The rest of the paper is organized as follows. In Section
2, we will discuss related work. Section 3 discusses the
experimental setup. Section 4 briefly introduces Random
Forests statistical learning. Section 5 will demonstrate out-
lier analysis of high resolution delay test signatures. Sec-
tion 6 will demonstrate supervised analysis of delay test
signatures for production test. Section 7 will introduce an
adaptive test methodology for production test. Section 8
concludes the paper.

2 Related Work
There have been many efforts to use statistical learning

methods on post-silicon data. Researchers at Intel have pub-
lished several case studies in applying data mining tech-
niques toward optimizing the production test flow[8]. A
Bayesian learning based method for learning spatial de-
lay correlations from path delay testing was proposed in
[13]. Unsupervised learning methods such as clustering
have been suggested for IDDQ test data [9].

In [6], statistical techniques for identifying latent defects
and outlier screening were proposed. A Support Vector Ma-
chine (SVM) learning technique was proposed for improv-
ing delay test in [14]. In this work, probability estimates
and cost were not considered. The goals of using statis-
tical learning methods stem from the objective of achiev-
ing adaptive test, a test methodology that will intelligently
adapt based on the data that is collected. The most common
ideas are that the test methodology will adaptively reorder
patterns, or adaptively use different test suites for different
IC’s. These ideas have been explored in [4, 5].

Specific to delay testing, there has been a great deal of
work addressing the concern of small delay defects. It has
been well established that transition fault coverage does not
necessarily correspond with delay defect coverage. It has
been suggested that a “superset” of patterns is generated by

the ATPG in order to ensure the inclusion of sufficient tests
to detect a wide variety of defects. For example, the n-detect
test set [16] and the k-longest path delay test set [15] are
two notable examples of this sort. However, these test sets
may contain patterns that are redundant and/or ineffective
with respect to detecting the actual defects. In [12], the au-
thors proposed using multiple test clocks to screen for small
delay defects based on pre-silicon statistical pattern simula-
tion. This method does not have a post-silicon component
however and assumes accurate statistical timing models.

3 Experimental Setup
In this work, the experiments are simulation based. The

advantage of simulation is that we can have a complete con-
trol on the statistical systems to produce the good and the
defective behavior. This control facilitates the study to an-
swer more in-depth questions. Because our research results
are based on the assumptions employed in the simulation, it
is crucial to devise an experimental framework that is rea-
sonable to reflect the complexity of the problems to be stud-
ied. The simulation is Monte Carlo (MC) based where m
samples, whose delay values are statistically drawn from a
statistical timing model (STM), are simulated. Hence, each
sample has a different, fixed delay configuration.

To allow efficient simulation, our STMs are cell-based.
On each cell, the pin-to-pin delay is a function of four vari-
ables: input slew, output load, Vdd, and temperature. This
is quite standard in the industrial static timing analysis prac-
tice. Because the models are statistical, each pin-to-pin de-
lay is a random variable. We assume Gaussian random de-
lay variables so that only delay means and their standard
deviations are required to be recorded (rather than record-
ing the actual probability density functions).

To drive the experiment, thousands of defect-free cir-
cuit instances are generated using normal process variation.
A subset of circuit instances are generated with randomly
sized and randomly located delay defects injected. The size
of these defects are drawn from an exponential random dis-
tribution with a mean selected to be relatively small with re-
spect to the at speed clock cycle time. For each instance, a
15-detect transition fault pattern set was applied, and the de-
lay test responses were recorded assuming a discrete set of
test clocks. We refer to this data as the delay test signature.
Although transition faults tests are being used for this ex-
periment, our methodology is completely agnostic towards
the pre-silicon generation of delay tests; the delay tests can
be any mixture of tests.

4 Random Forests
Random Forests classification was proposed by Breiman

in 2001 [2]. The technique has become popular due to its
best-of-class performance combined with its relative sim-
plicity. The name of random forests describes the two main
characteristics of the algorithm. Since a number of deci-

Paper 23.1 INTERNATIONAL TEST CONFERENCE 3

sion trees are grown, the group of trees is simply a forest.
The term random describes the process of how each tree
is grown. During the tree growing process, the random-
ness is applied in two different steps. First, each tree is
grown based on a random sample of the training data, which
is known as bagging in the machine learning community.
Then, at each split node of each tree, a random selection of
the patterns is used (Section 6.4.1 will give additional detail
on how to grow a tree). The randomness that is thrown in
during the forest construction ensures that each tree is simi-
lar but different. It was proved that generalization error, the
error that happened when the constructed model is applied
to entire data space, of random forests converges when the
forest contains a large number of tree [2].

Random Forests is capable of efficiently analyzing data
sets with a large number of samples as well as a data sets
with high dimensionality(there are a large number of vari-
ables associated with each sample). Unlike statistical learn-
ing techniques such as Neural-Networks and Support Vec-
tor Machines which essentially produce black-box models,
Random Forests can offer interpretability of its generated
models. Specifically, Random Forest models can offer in-
sights on how similar samples are to each other, which can
be useful in clustering and outlier identification. It can also
rank the importance of input variables, which can be useful
in test-optimization. A custom implementation of Random
Forests, libRF [19], was used to analyze the data.

Random Forests are typically used in supervised learn-
ing, in which there is a labeled training set and the goal is
to predict the labels on subsequent unseen data. However,
Random Forests can also be used for unsupervised learn-
ing, when there is no labeled training data. In the subse-
quent sections, we will delve into how these two forms of
statistical learning can be applied to delay testing.

In the following, we present the unsupervised learning
application of outlier identification first, followed by the su-
pervised learning application of production test optimiza-
tion because in a typical flow, outlier analysis occurs before
production testing. In Section 6.1, we will present a de-
tailed discussion of Random Forest supervised learning.

5 Outlier Identification

In unsupervised learning, the data set provided to the
learning algorithm does not have labels. The learning al-
gorithm is then asked to group the samples based on the
similarity and difference presented in the data. In our case,
it means that the data set only contains the delay response
of each test pattern for every sample. Unsupervised learn-
ing can be useful for analyzing the high resolution delay test
signatures of preliminary sample chips when a detailed test
methodology has not been established yet. The term high
resolution means that a 15-detect transition fault pattern set
was applied using all test clock frequencies available. Dur-

ing this time before production test, failure analysis and de-
fect characterization is crucial. Unsupervised learning can
model the distribution of delay test signatures and identify
non-trivial outliers.

5.1 Trivial Outlier Analysis

400 600 800 1000 1200 1400 1600
0

100

200

300

400

Maximum Delay (ps)

N
um

be
r

of
 C

hi
ps

Outliers

Figure 4. Ind32: Trivial outlier identification

Finding outliers in 1-dimension is a rather trivial prob-
lem. As a baseline for comparison, we looked for outliers in
the maximum delay behavior of all the chips under analysis.
In Figure 4, a histogram of the delay behavior of the chips is
shown, with the outliers circled. As a threshold, it is conve-
nient to use a 3σ threshold, in our case, we chose to approx-
imate σ using median absolute deviation [17] a measure of
the variance that is more immune to outliers. In essence,
this outlier analysis works by reducing each chip to a single
dimension (its maximum delay). While this method should
be able to identify chips that have gross delay defects, this
method will not capture more subtle defects.

5.2 Random Forest Outlier Analysis

To identify more subtle defects it is necessary to consider
all the dimensions available (potentially thousands of delay
test patterns). Outliers are chips that are distant from the
main distribution. However, it is well known in statistical
learning, that as the number of dimensions increase tradi-
tional distance measures like Euclidean distance become in-
effective. This is known as the curse of dimensionality and
is due to the exponential increase in volume as the num-
ber of dimensions increase. Because of this phenomenon,
every chip will seem distant to every other chip in a high-
dimensional space. Random Forests, however is able to pro-
vide a useful distance measure that works well despite the
number of dimensions in the data.

Random Forests unsupervised learning is built-upon
Random Forests supervised learning. To apply supervised
learning, a second synthetic data set is constructed based on
the original data set. Samples in the original set are labeled
as one class and samples in the synthetic set are labeled as
the other class. Then, random forest is constructed as a bi-
nary classifier to differentiate these two classes of samples.

The original data set can be represented as a matrix
A = |ai j|i=1...n, j=1...k where i is the index for chip sample
and j is the index for pattern delay. The synthetic data set is
another matrix B = |bi j|i=1...m, j=1...k. Each bi j is randomly

Paper 23.1 INTERNATIONAL TEST CONFERENCE 4

sampled from the column values {a1 j,a2 j, . . . ,an j}. The
sampling is done for each bi j individually. Essentially, the
univariate distribution of each pattern delay across all chips
in the synthetic set is equivalent to the original set. How-
ever, the correlations between the pattern delays of the same
chip in the original set have been entirely destroyed due to
the random sampling scheme. Breiman [2] shows that, if the
constructed forest for the binary classification can success-
fully differentiate between the original and synthetic data,
then the forest can be used for unsupervised learning by
constructing a proximity matrix.

In our application, the binary classifier forest is utilized
to measure the distances (similarities) between pattern de-
lay signatures of chips. Suppose the forest consists of 100
trees T1, . . . ,T100. The distance between two pattern delay
signatures (from two chips) is measured by counting the
number of trees that use the same paths to classify the chips.
Suppose this number is 60. Then, the distance is recorded as
0.60. Based on this measure, the proximity matrix is built to
record the distances between any pair of chips. This prox-
imity matrix is then used for outlier identification.

Figure 5 shows a proposed flow in which Random
Forests analysis operates directly on a collection of delay
test signatures and produces a proximity matrix.

Delay Test
Signatures

Random
Forest

Analysis

Outliers
for Study

Proximity
Matrix

Figure 5. Unsupervised Random Forest Analysis

The proximity matrix depicts how similar each chip is
to every other chip. For visualization of the proximity ma-
trix, multi-dimensional scaling can project the matrix into
2-dimensions. Note that this is for visualization only, as the
scaling coordinates do not represent any meaningful values.

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

Scaling Coordinate 2

S
ca

lin
g

C
oo

rd
in

at
e

1

Figure 6. Ind32: 2-D projection of proximity matrix
(points of defect-injected samples are marked as ×)

Figure 6 shows an example projection. Notice that good
samples are clustered in a strip while many defect-injected
samples locate outside the strip. Some defective samples
mix with the good samples and do not appear to be out-
liers. This is possible as injected small-delay defects may
not cause them to behave differently from the good samples.

Another way to analyze the proximity matrix is via the

0 500 1000 1500
5

10

15

20

25

Chip Number

O
ut

lie
r

M
ea

su
re

3−sigma threshold

Figure 7. Ind32: Outlier Measure plot

outlier measure, a score derived for each sample to measure
the average distance of the sample from all other samples.
In Figure 7, the outlier measure of each sample is plotted.
By selecting a threshold for this score, we can consider sam-
ples that exceeds the threshold as outliers.

Table 1. Outlier Analysis

Circuit Trivial RF Outliers
s15850 4 197
s9234 0 236
Ind32 28 137

Recall that in Figure 4 a trivial outlier identification
method is shown. In Table 1, we compare how many defect-
injected samples can be found via the trivial outlier method
versus the outlier measure method. For each circuit, delay
test signatures from 2000 samples were examined. For one
thousand of the samples, small delay defects were injected.
These defects are clearly hard to detect, as the trivial outlier
analysis reveals few of them. However, by analyzing de-
lay test signatures using random forests, these hard-to-find
defective chips can be identified via outlier analysis.

6 Supervised Learning and Delay Testing
In this section, a robust analysis which directly targets

pass/fail labeling and minimizes overkill and test escapes
is discussed. For this type of analysis, supervised learning
is well suited. In supervised learning there are two phases,
a training phase and an application phase. In the training
phase, a labeled training data set is first used to generate a
learned model. In the application phase, the learned model
is applied on unseen and unlabeled data, and the labels are
predicted. For production delay test, the training data is the
delay test signatures of known-good dies and known-bad
dies. The labels we want to predict are pass and fail.

Delay testing as a supervised learning problem is shown
in Figure 8, M refers to the number of samples (chips) con-
tained in the matrix, and N is number of the variables (test
patterns). The learning algorithm takes the matrix and tries
to construct a classifier C(.) that will be used to predict the
label of unlabeled vector�r of length N [14].

Since we have the advantage of having full simulation
knowledge, golden labels, pass and f ail, were determined
by examining if injected defects had an effect on critical

Paper 23.1 INTERNATIONAL TEST CONFERENCE 5

p1 p2 pN

s1

s2

sM/2

sM/2+1

sM

r1

r2

rM

= [d11, d12, d1N

= [d21, d22, d2N

= [dM1, dM2, dMN

]

]

]

…

…

…

…

…

…

…
…

0

0

1

1

0

…
…

go
od

de
fe

ct
iv

e

patterns
sa

m
pl

es

Training a
classifier C(.)

For a given sample s, C(r) → {0,1} to
classify the sample into good or bad

Training

Application in testing

Figure 8. Delay Test as a supervised learning problem

path delays. Thus, not all of the defect-injected die are la-
beled as fail. We believe this will mimic the results of ex-
tensive testing for delay defects in reality.

6.1 Random Forests Supervised Learning
As mentioned in Section 4, a number of trees are grown

based on the training set. When a new sample is to be classi-
fied, the sample is presented to each tree in the Random For-
est. Each tree makes a classification decision on the sample.
These decisions can be thought of as votes. For each sam-
ple, the random forest can then provide class probability
estimate, based upon the votes. The ratio of votes a class
receives relative to the number of decision trees is the prob-
ability the sample being classified to the class. Intuitively,
this can be thought of as a wisdom of the crowds effect, in
which the forest as a whole performs better than any indi-
vidual decision tree. The performance of random forests is
quite competitive with other top of the line classifiers[3].

6.1.1 Making Cost-Sensitive Pass/Fail Decisions
Applied to delay test, a Random Forest will generate failure
probability estimates: Pr(f ail|tests), the conditional prob-
ability of failure given the test results. These probability
estimates can greatly improve decision making under con-
ditions of uncertainty. For each die encountered, the de-
cision has to be made either to pass or fail the die. Ac-
cordingly there are costs that are associated with making
these decisions, specifically the cost of throwing away a
good chip, Coverkill and the cost of shipping a bad chip to
the customer, Cescape. We can utilize the class probability
estimate to present the expected costs of making a pass and
fail decision (assuming that making the correct classifica-
tion has zero cost).

E[Cpass] = Pr(f ail)∗Cescape (1)

E[Cf ail]] = (1−Pr(f ail))∗Coverkill (2)

In other words, if a chip is passed, the expected cost of
the decision is the probability that it is actually a bad chip
multiplied by the cost of shipping a bad part. If a chip is
failed, the expected cost of the decision is the probability
that it is a good chip multiplied by the cost of throwing away
a good chip. An optimal decision rule uses the failure prob-
ability estimate and makes the decision that has the least

expected cost. Thus, it will be a simple threshold test based
on the Pr(f ail). If this probability is greater than β, than
the best decision is to label the sample fail, otherwise, the
best decision is to label the sample pass. β can be derived
by setting these two expected costs equal to each other and
solving for Pr(f ail). Thus, the cost optimal boundary β is:

Pr(f ail) > β =
Coverkill

(Cescape +Coverkill)
(3)

By applying this rule given a failure probability for each
die, we have a theoretically optimal method for minimizing
the expected cost of the decision. In contrast, traditional test
flow only produces binary information and does not support
this type of cost optimization.

6.2 Random Forest Learning Flow

Training
Data

Sample
Golden
Labels

RF
Algorithm

Pass/Fail
Probability
Prediction

Validation
Data

Sample Die
Delay Test
Signature

High Resolution
RF Models

Figure 9. Random Forests Learning Flow

The basic flow of how Random Forests can be applied to
delay testing is shown in Figure 9. A set of training and val-
idation samples are made by randomly choosing from the
pool of samples that has been labeled. The training sam-
ples are then given to the Random Forests (RF) algorithm
to build a high resolution RF model using all available pat-
terns and test clock frequencies. The validation samples are
used to verify the effectiveness of the RF model.

For several circuits, we trained RF models using 2000
samples, and then tested the models on an additional 2000
samples. In Table 2, we compare the defect capture and
overkill performance of a traditional at-speed single clock
delay test against the RF methods where two different set-
tings of the failure probability threshold, β, are used. Note
that because the total number of defective samples is fixed,
the number of test-escapes decreases relatively to the in-
crease of the capture and overkill numbers.

Table 2. Traditional Delay Test vs RF Performance

Method Captures Kills Captures Kills Captures Kills
Circuit c880 Ind32 s13027
Traditional 9 0 28 0 4 0
RF β = 50% 51 7 220 2 82 28
RF β = 33% 92 38 283 16 159 90

In the traditional delay test, the test clock is set at the
maximum pattern delay of all labeled good samples. Hence,
it does not cause any overkill. However, it is also unable to
capture many of the small delay defects. The number of
defect captures increases dramatically by using RF, most
notably in Ind32. This comes with the price of making a
few overkills. By varying the failure probability threshold

Paper 23.1 INTERNATIONAL TEST CONFERENCE 6

β, the trade-off between overkills and captures can be flex-
ibly explored. Lowering β increases overkill, which may
be economically justified if the cost of test escape is signif-
icantly higher than the cost of overkill.

6.3 Identifying Marginal Chips

The probability estimates themselves may provide infor-
mation about how marginal the chips are. Figure 10 is a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Pr(Failure)

N
o

rm
a
li

ze
d

 O
cc

u
re

n
ce

s

Fail
Pass

Figure 10. Ind32: Probability estimate histograms

histogram of how many good and bad chips fall into differ-
ent failure probability estimate bins. From this histogram,
we see that the first bin is dominated by passing chips which
is quite reassuring. The next three bins have a small amount
of good chips. We decided to examine these labeled good
die that have greater than 10% probabilities of failure. Out
of the 140 labeled good die with this property, 85 had latent
delay defects that were injected in the simulation process
but did not affect any critical paths and thus were not la-
beled f ail. The size of these defects are plotted in Figure
11. We note that many of these defects are small.

50 100 150 200 250 300 350 400
0

10

20

30

D

ie

Defect Size(ps)

Figure 11. Latent defect sizes found

This is an important result since it shows that the proba-
bility of failure estimates can help identify marginal die that
otherwise may escape traditional testing. If a die passes all
traditional tests, yet has a significant probability of failure
estimate from the random forest classifier, it may be worth it
to do a detailed analysis to determine if there are any latent
defects that are escaping the normal tests

6.4 Pattern and Test Clock Reduction

Reducing the pattern set is a critical part of post-silicon
test optimization. In order for parametric delay test to be
practical in production test, it is important to require a min-
imal number of test-patterns and a minimal number of test
clock frequencies. Test engineers must be able to easily ex-

plore the trade-off between pattern set size, number of test
clock frequencies, and test error cost.

6.4.1 Interpreting Random Forests Model
Fortunately, the models that are generated by Random
Forests can be interpreted in a manner that can be utilized
in test optimization. As previously mentioned, Random
Forests models are composed of many decision trees.

x1 > C1

x2 > C2Fail

Passx3 > C3

Fail Pass

(a) Ex. Decision Tree

x1 > CT

x2 > CT
Fail

Fail Pass

xn > CT

Fail

...

(b) Trad. Delay Test

Figure 12. Decision Trees

Decision trees are produced by a rather straightforward
algorithm. Given the training data of test pattern responses
and pass/fail labels, a decision tree learning algorithm picks
which patterns to create “split” nodes with. Each ”split”
node is associated with a single value and will divide the
data into two subsets based on whether the feature (pattern
delay) is lesser or greater than a comparison value. This
process is repeated recursively on each subset. The leaf
nodes at the bottom of the tree will then contain the pass/fail
decision. A simple example tree that may be created in this
manner is shown in Figure 12 a), in which patterns x1...x3

may be compared against values C1...C3.
The comparison values in the split nodes have a special

meaning with respect to delay testing. Each split node needs
to know whether the pattern delay of a sample exceeds a
certain comparison value. This information is obtained in
delay test by applying the test pattern at a clock frequency.
Thus, each split node can be viewed as a test pattern, clock
period (frequency) pair.

In this manner, traditional delay test can be viewed as a
special decision tree that is always constructed as shown in
Fig 12 b) where one very conservative test clock period CT

is used, and a chip sample is only passed if its test pattern
delays are all smaller than this clock period.

6.4.2 Calculating Test Application Cost
We can track the cost of applying the tests needed for a ran-
dom forest classifier by examining each of the component
decision trees of the Random Forest model. As we men-
tioned previously, a split node in a tree is associated with a
single pattern at a specific clock frequency. This is actually
a conservative view, as technically, the number of patterns
and clocks can vary adaptively as different samples take dif-
ferent paths to reach the decision leaf. For the rest of this
section we will take this conservative view that each sample

Paper 23.1 INTERNATIONAL TEST CONFERENCE 7

die is tested with all the pattern/clock combinations found
in the random forest. Thus, for each sample die we will
actually be collecting more information than is strictly nec-
essary for the random forest to output its decision.

6.4.3 Variable (Pattern-Clock Pair) Importance
In order to automatically interpret the model, Random
Forests can provide a very useful metric called variable im-
portance. For each decision tree in the random forest, only
a subset of the total possible test pattern/test clock combi-
nations are used. For each of these pattern-clock pairs, the
values in the data are permuted randomly, and the effect on
accuracy is measured against the normal undisturbed data.
This comparison is made for all pattern-clock pairs and av-
eraged across all trees resulting in an importance score. The
intuition here is that when important pattern-clock pairs are
permuted, the accuracy will be significantly altered. Thus,
we can obtain an importance ranking of all the pattern-clock
pairs. Guided by this ranking, we can intelligently reduce
the number of patterns and clocks needed by getting rid of
the lowest ranking patterns and clocks.

6.4.4 Pattern/Clock Reduction Flow
The flow of the proposed pattern/clock reduction process is
presented in Figure 13. Based on the high resolution RF
model, the variable importance is calculated.

High Resolution
Delay Test
Signature

Pattern/Clock
Importance
Selection

High Resolution
RF Models

Pass/Fail
Probability
Prediction

Low Resolution
Delay Test
Signature

RF
Algorithm

Low Resolution
RF Models

Production
Low Resolution

Delay Test

Figure 13. Pattern/Test Clock reduction flow

By selecting the top k most important test patterns with
their corresponding clock frequencies, a low resolution de-
lay test signature is obtained, named as such due to its re-
duced pattern counts and smaller number of clock frequen-
cies. Then Random Forests learning algorithm is applied on
the low resolution data, and a new low resolution RF model
is generated. Since the low resolution model requires de-
lay test signatures with fewer patterns and test clock fre-
quencies, it is more effective for production use. Next, we
present the effectiveness of the methodology.

6.4.5 Experimental Results
Using the importance scores of each pattern, we rank the
patterns and generate random forest classifiers using only
the top k ranking patterns. The important trade-off to exam-
ine is how reducing the number of patterns will affect the
accuracy of the classification.

Table 3. Ind32: Performance vs Pattern Set Reduction
β = 50% β = 33%

Pat. # Overkills Captures Overkills Captures
100 14 142 59 189
300 12 158 59 212
500 9 156 55 227
700 14 176 44 251
900 8 183 39 260

1100 8 195 34 272
1300 6 203 37 272
1500 4 206 29 278
1700 3 201 36 276
1900 7 206 37 281

In Table 3, the overkill and defect captures are summed
up for the 2000 validation samples given random forest clas-
sifiers that use different numbers of patterns with a fixed
100 decision trees. For the sake of argument, we assume
that Coverkill is $1 and Cescape is $2. To illustrate the ef-
fect of varying the decision boundary, we show the results
with both a standard decision boundary of β = 50% and
the cost-optimal decision boundary of β = 33% (calculated
from the equation in Section 6.1.1). It can be seen that by
lowering the decision boundary, we incur more overkills to
reduce test escapes. It is quite easy to change the decision
boundary since the random forest classifier outputs proba-
bility estimates. The test program settings are essentially
unaffected in the sense that the patterns and test clocks are
still the same. This kind of flexibility is much harder to
achieve in traditional delay testing where the only flexibil-
ity is in changing the test clock.

In Figure 14, the costs associated with using both bound-
aries are plotted against the number of pattern-clock pairs
applied (test time), and we verify that the costs associated
with the optimal decision boundary are lower than that of
the standard boundary. Using these plots, a test engineer
would be able to analyze the trade-off between the number
of test patterns and the cost of making mistakes.

0

100

200

300

400

500

600

10
0

50
0

90
0

11
00

15
00

19
00

22
00

25
00

29
00

32
00

35
00

39
00

43
00

Test Time

E
rr

o
r

C
o

st

50%

33%

Figure 14. Decision Cost vs Test Application Cost

In Table 4, a simple comparison is made between high
resolution delay signature, the 15-detection transition fault
delay test pattern set applied with all 18 test clock frequen-
cies, and the result based on low resolution delay signature,
top 2200 pattern/test clock frequencies pairs based on the

Paper 23.1 INTERNATIONAL TEST CONFERENCE 8

variable importance metrics. The overkills from the low
resolution random forest are slightly higher than the high
resolution classifier on the 2000 validation samples. How-
ever, the low resolution model’s test application cost, the
number of pattern/test clock frequency pairs used in the
model, is drastically reduced from that of the high resolu-
tion case. Only 5.7% of the high resolution model’s pattern-
clock pairs are needed. We choose the number 2200 for
comparison because the 15-detection transition fault delay
test pattern set has around 2200 patterns. In other words,
the cost of this flow at production will be same as running
15-detection transition fault delay test pattern set plus the
cost of test clock frequencies switching.

Table 4. High Resolution vs Low Resolution
β = 50% β = 33%

Pat. # Kills Captures Kills Captures Test Cost
High Res. 2 220 16 283 34650
Low Res. 6 220 35 284 2200

A histogram of the test clock frequencies used in the high
resolution RF model is shown in Figure 15. We can see that
majority of the split nodes uses a test clock frequency that
is faster than frequency of traditional delay test.

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Test Clk Frequency

O
cc

u
rr

en
ce

Traditional
Test Freq.

Figure 15. High-Res. Test Clock Usage Distribution

Also shown in Figure 15 is the clock frequency used in
traditional delay test, which would be set at 4 to avoid over-
kill. For comparison, the histogram of test clock frequency
usage in the reduced low resolution RF model is show in
Figure 16. We see that fewer test clocks are needed in the
low resolution RF model. It should also be noted that tra-
ditional delay test clock frequency, bin 4 in Figure 15, is
not used in the low resolution RF model built upon the most
important 2200 patter/test clock frequency pairs from the
variable importance analysis.

0

100

200

300

400

500

600

6 7 8 9 10 11 12 13 14 15

Test Clock Frequency

O
cc

u
rr

en
ce

Figure 16. Low-Res. Test Clock Usage Distribution

6.5 Selecting the Best Single Test Clock

Suppose that multiple clock testing is not feasible, and
only a single fixed clock can be used to generate the delay
test signature. We used our reduction flow to choose the
best single test clock for several circuits, and compared the
results to traditional delay test.

Table 5. Single Clock Results

Traditional RF-based
Circuit Caps. Tc Caps. Kills Tc ∆Tc %

c880 9 1425 61 7 900 -36.84%
c1355 26 1485 116 15 1000 -32.66%
Ind32 28 1087 211 33 700 -35.60%

s13207 4 2240 82 45 900 -59.82%

In Table 5, the number of small defect captures and
the test clock cycle time are shown for several circuits for
the traditional delay test methodology as well as the Ran-
dom Forest based methodology. Tc is the test clock cycle
in picoseconds. The traditional test clock cycle is set ide-
ally with no guardband so it is actually already optimistic
in the number of small defect captures. Also, the num-
ber of overkills in the RF-based flow is listed (there are
no overkills in the traditional method). The best single test
clock cycle from Random Forest analysis is chosen for the
RF-based flow. In the last column, the percent reduction in
test clock cycle time is shown. Note that for all circuits,
considerably more small delay defects are captured using
the RF-based flow. There is, however, a trade-off, in that
a small number of overkills is incurred. It is interesting to
note that the best single test clock cycle is at least 30 per-
cent smaller than the conservative at-speed test clock cycle.
This demonstrates that even if the RF-based flow is limited
to using a single test clock, considerably improved results
can be obtained over traditional delay test.

7 Adaptive Test Clocking

Training
Samples

Delay Test
Sig @ C1

RF
Learning

RF
Learning

RF
Learning

… …

Delay Test
Sig @ C2

Delay Test
Sig @ Cj

Pr(fail)
@ C1

Pr(fail)
@ C2

Pr(fail)
@ Cj

Adaptive Test
Order Tree

Decision Tree
Algorithm

Figure 17. Adaptive Test Clocking Flow

However, if multiple test clocks are used in production
test, we must consider that switching test clocks takes a non-
negligible amount of time in testing. Practically, it makes
sense to group patterns by test clock frequency. If test is
organized this way, it is natural to make it adaptive. That is,
depending on the result of the previous test clock, we may
choose to apply different subsequent test clocks. The end
result being that different chips will have a different battery
of test clocks applied.

Paper 23.1 INTERNATIONAL TEST CONFERENCE 9

We propose a two-step flow toward adaptive test clock-
ing, and it is illustrated in Figure 17. First, delay test sig-
natures are separated and grouped by test clock frequency.
Individual Random Forest models are then trained for each
specific clock frequency. The outputs of each Random For-
est model, the probability estimates, are then used as inputs
to decision tree algorithm as shown. This results in a single
decision tree that can be used to adaptively order tests.

Figure 18 shows the result after applying the above
method onto a Ind32, a combinational block from an in-
dustrial design. In this example, the decision tree indicates
that all chips should have test clock C2 applied. Depending
on this result, test clocks C1 and C3 may be applied. Note
that at the bottom of the tree, a class marginal can be given
if the leaf node is not decisive (for example, in the training
phase the node contains almost equal amounts of defective
chip samples and good chip samples).

Pass

Reject

C2(.) > 0.44 ?

C1(.) > 0.14 ?

C4(.) > 0.36 ?

Yes
No

YesNo

Reject

Yes

C1(.) > 0.34 ?

No

Yes

Pass

No

Marginal

Figure 18. Adaptive Ordering Tree for Ind32

In Table 6, we compare the adaptive ordering result
against a result using a non-adaptive ten fixed test clocks.
Although the non-adaptive results in fewer overkills, the
adaptive test result can actually result in more defect cap-
tures while requiring on average only 2 test clocks with re-
ducing total tester time. By using adaptive test ordering, we
can reduce the average number of test clocks needed to test
each chip while still maintaining screening capability. The
reduction on number of test clocks required directly trans-
lates into saving on average test time that each chip needs.

Table 6. Adaptive Ordering Performance Comparison

Clocks Test Time Kills Captures
Adap. Test (avg) 2.05 4443 19 232

Fixed Test 10 21650 2 221

8 Conclusion and Future Work
In this work, we introduced the concept of parametric

delay test and measuring delay test signatures. We demon-
strated the utility of Random Forests statistical analysis of
delay test signatures in several applications. For defect
characterization of initial sample chips, unsupervised out-
lier analysis can identify hard-to-find latent defects. For
production test, Random Forests supervised learning can
learn to distinguish good chip delay test signatures against

bad chip delay test signatures. The model built by Ran-
dom Forests can even give a probabilistic output. Thus,
the pass/fail threshold can be flexibly decided by economic
means. To further optimize production test, the Random
Forest model can be interpreted in detail. Test patterns
and test clocks can be reduced while maintaining screen-
ing capability. Significant improvements in small delay de-
fect screening can be achieved even with only a single test
clock. We also demonstrated an adaptive test clocking flow
that would allow for a variable number of test clocks to be
applied to each chip. Finally, we note that these methods
are delay test agnostic, in the sense that the methods can be
applied to analyze transition-fault tests, path-delay tests or
BIST patterns, even though this work assumes transition-
fault tests in the experiments.

Besides multiple test clock frequencies, different volt-
ages and temperatures can also be analyzed for adaptive
test ordering. Random Forests statistical analysis could be
applied with other parametric tests such as IDDQ. Finally,
these methods could also be used to correlate delay test sig-
natures to functional speed for speed-binning applications.

References
[1] Margineantu, Dragos D., Class Probability Estimation and Cost-Sensitive Clas-

sification Decisions, European Conference on Machine Learning 2002
[2] Breiman, Leo, Random Forests. Machine Learning (45) 1, pp. 5-32, 2001.
[3] R. Caruana, A. Niculescu-Mizil An Empirical Comparison of Supervised

Learning Algorithms. ICML 2006
[4] K.M. Butler, J. Saxena. An empirical study on the effects of test type ordering

on overall test efficiency. ITC , 2000.
[5] R. Madge, B. Benware, R. Turakhia, R. Daasch, C. Schuermyer, J. Ruffler.

In search of the optimum test set - adaptive test methods for maximum defect
coverage and lowest test cost. ITC, 2004.

[6] B. R. Benware, R. Madge, C. Lu, R. Daasch, R. Effectiveness comparisons of
outlier screening methods for frequency dependent defects on complex ASICs.
VTS, May 2003.

[7] J. Dworak, J.D. Wicker, S. Lee, M.R. Grimaila, M.R. Mercer, K.M. Butler, B.
Stewart, and Li-C. Wang. Defect-Oriented Testing and Defective-Part-Level
Prediction. IEEE Design & Test, Jan-Feb 2001, pp. 31-41.

[8] R. Goodwin, et al. Advancements and Applications of Statistical Learning/Data
Mining in Semiconductor Manufacturing Intel Technology Journal, Volume 8,
Issue 4, November 17, 2004, pp. 325-336

[9] S. Jandhyala, et al. Clustering Based Techniques for IDDQ Testing. ITC, 1999.
[10] Li-C. Wang, A. Krstic, L. Lee, K-T. Cheng, R. Mercer, T.W. Williams, M.

Abadir. Using Logic Models To Predict The Detection Behavior Of Statistical
Timing Defects. ITC, 2003.

[11] M. C-T. Chao, Li-C. Wang, K-T. Cheng. Pattern selection for testing of deep
sub-micron timing defects. DATE, 2004.

[12] B. Lee, H. Li, Li-C. Wang, and M. Abadir. Hazard-aware statistical timing
simulation and its applications in screening frequency-dependent defects. ITC,
2005.

[13] B. Lee, Li-C. Wang, and M. Abadir. Refined Statistical Static Timing Analysis
Through Learning of Spatial Delay Correlations. DAC 2006.

[14] B. Lee, Li-C. Wang, and M. Abadir. Issues on Test Optimization with Known
Good Dies and Known Defective Dies - A Statistical Perspective, ITC,2006

[15] W. Qiu and D. M. H. Walker. An Efficient Algorithm for Finding the K Longest
Testable Paths Through Each Gate in a Combinational Circuit. ITC, 2003.

[16] S. Ma, P. France, and E. McCluskey. An Experimental Chip to Evaluate Test
Techniques: Experiment Results. ITC, 1995.

[17] S. S. Sabade, D. M. Walker, Evaluation of Effectiveness of Median of Absolute
Deviations Outlier Rejection-based IddQ Testing for Burn-in Reduction. VTS,
2002.

[18] N. Ahmed, M. Tehranipoor and V. Jayaram, A Novel Framework for Faster-
than-at-Speed Delay Test Considering IR-Drop Effects. ICCAD, 2006.

[19] Benjamin N Lee, libRF: a library for Random Forests, 2007. Software available
at http://mtv.ece.ucsb.edu/benlee/librf.html

Paper 23.1 INTERNATIONAL TEST CONFERENCE 10

