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Abstract
As the timing behavior of the good and defective chips

become statistical, the traditional notion that there exists
a one-dimensional timing boundary to separate the good
and defective behavior may no longer be true. This paper
studies issues in test optimization for screening statistical
delay defects. After the first silicon tapeout, test data learn-
ing based on silicon samples can be utilized to optimize the
test setfor mass production. This approach depends on the
availability of known good and known defective samples.
This paper focuses the discussion on silicon sample based
test optimization. We relate this problem to binary classifi-
cation andpattern selection to thefeature selection problem
in statistical learning. Experimental results are presented to
explain the methodologies and the new concepts.

1 Introduction
The objective of test optimization is to minimize the test

effort while maximizing the defect coverage. This paper
studies the problem of test optimization in the context of ap-
plying scan patterns for screening statistical delay defects.
A more general concept of test optimization is adaptive test
[1, 2]. While this work focuses on optimization based on
only one type of test set with one test delivery method, adap-
tive test intends to achieve optimal result across all test sets
and all test application methods.

With our narrower focus, test optimization can be
thought of minimizing the test set while maximizing the de-
fect coverage. Historically, this problem has been well stud-
ied with respect to logic faults and defects. For example, in
[3, 4], the authors propose a defective part level prediction
model called MPG-D. The optimization flow can begin with
a superset of patterns such as an n-detect stuck-at fault set
Sn. The MPG-D is used as a reference model to select a sub-
set of patterns from Sn. The selection objective is that the
predicted defect level by MPG-D based on this subset of
patterns, is kept the same as that given by original pattern
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set Sn, while the size of this subset is minimized.
MPG-D predicts the defect level of a test set T based

on three things: two parameters T,A and a coverage vector
C = [cl c2,... ,Ck] where the assumption is that there are k
potential defective sites (such as k nets). Each ci is a cover-
age measured on the site i by simulating T. This coverage
is observation-based, meaning that it is based on counting
how many times a particular site is observed by the pattern
setT [3].

pre-silicon

--- boptimnized
testset S

MPG-D guided

post-sliIcon
Figure 1. Test optimization based on the defective part
level prediction model MPG-D [4] w.r.t. logic defects

In essence, an MPG-D model can be re-written as MPG-
D(T,A,C) where C is simulation-obtainable. The the actual
values of the two parameters T,A can be estimated either
based on a non-target fault simulation (such as a bridging
fault simulation) or based on applying Sn to a collection
of known good and defective sample chips. The authors
demonstrate that by allowing two degrees of freedom in
the defective part level prediction model, MPG-D can ac-
curately model the defect detection behavior and hence, is a
good model to guide the test set optimization.
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Same defect detection power with respect to P

Figure 2. Test set optimization methodology

Figure 2 summarizes the test set optimization methodol-
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ogy just described. This methodology consists of four basic
components: (1) a superset Sn of patterns to begin with, (2)
a test set quality evaluation scheme that can be either sim-
ulation based or silicon samples based, (3) a model P for
modeling the defect detection behavior by a pattern set, and
(4) a pattern selection algorithm based on P. The quality of
the selected set S, as predicted by the model P, should be
kept the same as that given by Sn. The size of S should be
minimized. Hence, the methodology defines a constrained
minimization problem.

Inspired by the work in [3, 4], the work in [5] extends
the analysis to consider statistical delay defects. Instead of
using an n-detect stack-at fault test set, the optimization be-
gins with an n-detect transition fault test set. Essentially,
the authors demonstrate that given a set of good and defec-
tive sample chips, if there exists a one-dimensional separa-
tion boundary between them (Figure 3-(a)), then a defective
part level prediction model that was intended for modeling
logic defect detection (such as MPG-D), may still be used
for guiding the test optimization. What remains unclear is
what if such a one-dimensional boundary does not exist.

A Separable by a
c, (1 dimension boundary)

Q good samples
X < defective samples

delay

Not separable by a timing point
en

QL good samples
Xn Adefective samples

delay

(a) Separable (b) Not separable
Figure 3. Illustration of a one-dimensional timing sep-
arable boundary between good and defective samples

Suppose that by applying a variety of different thorough
testing methods (Iddq, low voltage, high voltage, functional
test, etc.), we obtain a set of known good samples and a set
of known defective samples. If we plot the worst-case de-
lays (under scan with normal test environmental condition)
of the good and the defective samples based on a pattern
set, the two histograms may overlap, as illustrated in Fig-
ure 3-(b). In this case, we will need a multi-dimensional
boundary in order to separate them.

----------------- _This workExtended coverage

Scan-base Othert Other test,{delay testsi method 1 b metho
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Otherltet Other test
Other test method her test e

Total defective chip space

Figure 4. Application of this work in adaptive test

The use of a multi-dimensional boundary allows the
scan-based delay tests to provide higher screening capabil-
ity on the defective chips. Putting this into the context of
adaptive tests, Figure 4 then illustrates a potential applica-
tion of this work. In other words, by extending the coverage

of scan-based delay tests, this work can facilitate the global
test optimization in adaptive test.

1.1 Use of a binary classifier
Finding a multi-dimensional boundary to separate two

statistical distributions in general is the problem of binary
classification that has been studied extensively in the statis-
tical learning literature [6]. Therefore, it is natural to relate
the delay testing problem in Figure 3-(b) to the problem of
binary classification.

patterns p1 PI ... PN

si r1 = [ d1 2,d -- d1N ] 0

S2 r2 = [ d2l, d22, ... d2N] 0 o
E S *°

~SM2.. 0 1
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M2, MN ~~~~~~~a)SM rM [ dM1 dM2 dMN ] 1 J

For a given sample s Ml){ 1} to
Clssify thIe samrple into good Orbad
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Traininga
Apclassifin tetCin

Application in testing

Figure 5. Training a binary classifier for delay testing

Figure 5 illustrates the binary classification problem in
the context of learning from the test data based on known
good and known defective samples. Without loss of gener-
ality, we assume that there are M good samples and M de-
fective samples. We assume that there are N patterns. For
each sample si, let ri denote the test results [di1, di2,. , diN]
by applying the N patterns on the sample. In the training
phase, we apply a learning algorithm [6] to train a binary
classifier Co. In the application phase, for each chip s
which does not appear in the original sample set, we ob-
tain its test result r. Then, C(r) is used to classify s as good
or defective, i.e. C(r) = 0 means good and C(r) = 1 means
defective. The learning error is defined as the probabil-
ity that C(r) miss-classifies a given sample s. The learn-
ing accuracy (or generalization accuracy) is the probability
that C(r) correctly classifies s. This accuracy can also be
thought as the screening accuracy in the context of testing.

By formulating the problem into such a binary classifi-
cation problem, test set optimization involves three issues:

Test data How to define dij in order to allow more screen-
ing resolution (more classification power)? In statisti-
cal learning, this is the problem offeature generation
[6]. For example, the simplest case can be that each dij
is a value C {O, 1 }. We use a given test clock and check
if pattern pj on sample si result in a delay greater than
this clock. If it does, di1 = l and otherwise, di1 = 0. In
order to provide higher screening capability, we may
apply a sequence of clocks clko < clk1 < ... < clkk
such that dij is the first failing clock.

Pattern set reduction How can we reduce the number of
patterns without affecting the screening power of the
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resulting classifier? This is the problem offeature se-
lection [6].

Sample size How do we know that the collection of the
samples we have used in the training is enough? This
is the problem of generalization of the learning model
[11].

Refer back to Figure 2, what we have discussed so far
is to utilize the binary classifier Co as the model P in sili-
con samples based test set optimization, i.e. minimizing the
test set without sacrificing the classification power. Essen-
tially, Co becomes the reference model as MPG-D does in
Figure 1 before,

1.2 Use of a statistical timing analyzer
If the optimization is carried out in the pre-silicon stage,

an intuitive approach would be to replace the non-target
fault simulator in Figures 1 and 2 with a statistical delay
defect simulator. However, as pointed out in [7], statistical
delay defect simulation may be impractical due to its high
cost. And for pattern selection, we do not necessarily need
a defect simulator. We can apply a statistical timing sim-
ulator and use the concept of timing slack on every site to
select patterns [7].

The work in [7] used a Monte Carlo statistical timing
simulator for pattern selection, which is not efficient for
practical use. Hence, in an earlier work [8], an efficient
hazard-aware pattern-based statistical timing analyzer (PB-
STA) was implemented. The PB-STA was applied to se-
lect an optimal pattern set from the 15-detect transition fault
pattern set. The selection was based on a minimum-timing-
slack principle [8]. A key issue in the PB-STA is the lack of
a reliable statistical timing model to begin with.

In a recent work [9], the authors propose a Bayesian
learning framework where systematic delay correlations can
be learned from path delay testing and these learned corre-
lations can be used to refine the statistical timing model for
more accurate statistical static timing analysis (SSTA). The
same idea can be applied to PB-STA because the PB-STA
utilizes SSTA as its core engine [8].

If we combine PB-STA and the delay parameter learn-
ing methodology in [9], we obtain a simulation based test
set optimization framework. An interesting question to
look into is: How the pattern selection is impacted by
the improvement in the accuracy of the statistical timing
model, i.e. would the test sets selected before and after the
Bayesian parameter learning [9] be very different? We will
come back to this question in Section 7.

1.3 Overview
Figure 6 summarizes the two test optimization ap-

proaches described above. In this paper, we focus the
discussion on the silicon samples based approach because

refine Learning from
silicon samples

( Ref. [9] )
Simulation based

optimnized
test §dt s

OUSU UaislUllssi LinIn VVUI ) Silicon samples

based

Figure 6. Simulation based and silicon samples based
test set optimization in statistical timing domain

key issues in the simulation based approach have been ad-
dressed in [8, 9]. The optimization begins with a large n-
detect transition fault test set. Note that this is arbitrary and
can be replaced with any other test set intended for delay
testing, ex. [10]. The requirement is that this initial set has
to be a superset. This is because the subsequent steps only
perform test set reduction, not test set enhancement.

The rest of the paper is organized as the following. Sec-
tion 2 reviews the background and prior related work. Sec-
tion 3 describes our experimental framework and present
results to motivate this work. In Section 4, we discuss bi-
nary classifier for screening defective samples. We utilize
Support Vector Machines (SVM) [I 1] as our learning algo-
rithm. We relate the characteristics of the support vectors
in SVM to the generalization issue for screening unseen
chips in mass production. Section 5 discusses the feature
selection problem for test set optimization. Section 6 sum-
marizes the experiments for the silicon samples based ap-
proach. In section 7, we briefly review the simulation based
pattern selection approach in [8] and discuss how the ac-
curacy in the timing model may impact the selection. Sec-
tion 8 concludes the paper.

2 Background and related work

Delay defects are of growing concern with deep sub-
micron process technologies. Effective screening of delay
defects often requires a combination of parametric and non-
parametric testing methods [12]. Past studies have demon-
strated that the problem of drawing a reliable boundary be-
tween the good and the defective chips in delay testing is
inherently statistical [13].

Tests are optimized to detect defects, not faults whose
primary purpose is to guide ATPG. Because true defects can
only be seen from actual silicon test data, when preparing
the initial test set at the pre-silicon design phase, we often
want to construct a "superset" in order to ensure the inclu-
sion of all tests required to detect a wide variety of potential
defects. A typical way to construct such a superset is by em-
ploying some sort of randomness in the ATPG process. For
example, the n-detect test set [14] and the k-longest path de-
lay test set [10] are two notable examples of this sort. How-
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ever, these test sets may contain patterns that are redundant
and/or ineffective with respect to detecting the actual de-
fects.

Optimization on the initial test set obtained from the
ATPG can be approached by two angles: (1) Because the
ATPG is timing independent, a pattern may be redundant or
ineffective if we consider timing. (2) In preparing for the
initial test set, we have to assume the worst for the defects.
After seeing the initial test data, we may discover that some
patterns are not needed because they do not provide addi-
tional defect screening power.

The idea of beginning with a superset and then optimiz-
ing based on actual test data, is a popular concept in analog
testing [15]. In analog testing, we often begin with a large
number of tests and measurements in order to observe the
maximal screening resolution. Then, for mass production, a
reduced set is selected such that the same screening resolu-
tion is maintained from a statistical sense. It is recognized
that separating the good and the defective chips in analog
testing may require a multi-dimensional (and non-linear)
boundary. For example, the recent work in [16] develops
a neural network based classifier to achieve that boundary.

As mentioned before, adaptive test [1, 2] is a general
concept of test optimization. However, the idea of "learn-
then-optimize" can also be a fundamental principle in adap-
tive test [2]. For example, researchers have started to inves-
tigate the potential of applying statistical learning and data
mining techniques to optimize the production test flow [17].

On the design side, statistical static timing analysis
(SSTA) has been a popular research topic in recent years
[18]-[19]. If we consider test patterns, SSTA becomes
pattern-based statistical timing analyzer (PB-STA) [8, 20].
PB-STA estimates the variations reflected in the pattern de-
lays and reports these delays as random variables in terms
of their means and standard deviations. The statistical anal-
ysis relies on a statistical timing model that captures both
die-to-die and with-in-die variations at different voltage and
temperature corners [8]. PB-STA can also assess the uncer-
tainties in pattern delays so that non-robust patterns [21] can
be discarded before moving into the first silicon stage [8].

3 Experimental methodologies
Our study is simulation based. The advantage of simu-

lation is that we can have a complete control on the statisti-
cal systems to produce the good and the defective behavior.
This control facilitates the study to answer more in-depth
questions.

Because our research results are based on the assump-
tions employed in the simulation, it is crucial to devise
an experimental framework that is reasonable to reflect the
complexity of the problems to be studied. The simulation
is Monte Carlo (MC) based where n samples, whose delay
values are statistically drawn from a statistical timing model
(STM), are simulated in each run. Hence, each sample is

with a fixed but different delay configuration.
To allow efficient simulation, our STMs are cell-based.

On each cell, the pin-to-pin delay is a function of four vari-
ables: input slew, output load, Vdd, and temperature. This
is quite standard in the industrial static timing analysis prac-
tice. Because the models are statistical, each pin-to-pin de-
lay is a random variable. We assume Gaussian random de-
lay variables so that only delay means and their standard
deviations are required to be recorded (rather than record-
ing the actual probability density functions). There are three
statistical timing models (STM) considered in our simula-
tion framework, as illustrated in Figure 7:

Pre-silicon Post-silicon Post-silicon
STM good-circuit lefective-circuit

, ST1M (G, STO1 STM9 (D-STMT\)
1 Add spatial correlations ncease the delays on k dea
2. Add systematic shift variables, each by an amount
3- Add Gaussian noisee, minD+xD where XD follows the

distribution 1 /[*eA(-1/ t*XD),
based on
*h latten circuit, or
;h ierarchical circuit

Figure 7. Statistical timing models used in our study

Pre-silicon STM (P-STM): This STM was characterized
through Monte Carlo SPICE simulation based on a 90nm
technology file [20]. This STM is what we have in the pre-
silicon analysis, before seeing the test data from simulated
silicon samples. The STM supports typical logic gates up
to four inputs.
Post-silicon good STM (G-STM): We assume that the P-
STM is inherently inaccurate [22]. This inaccuracy can be
due to three common reasons:

1. Spatial delay correlations among pin-to-pin delays are
often hard to characterize in process characterization
[22]. These correlations are due to systematic process
variations or layout dependent variations [23]. These
correlations significantly impact the circuit worst-case
performance [19]. In the G-STM, a distance-function
based grid model on with-in-die spatial delay correla-
tions is employed [9]. This model is unknown to the
P-STM.

2. The SPICE model is often developed in parallel to pro-
cess development. Due to the complexity involved in
test chips and process characterization, this model is
not updated often as process becomes matured. We
model this discrepancy by allowing a systematic re-
duction in the delay standard deviations. This is to say
that as process becomes more matured, the uncertainty
in delay parameters become smaller.

3. In statistical modeling, a common approach is the Re-
sponse Surface Modeling (RSM) method [24]. For a
delay variable, there is inherently an error associated
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Figure 8. Small defect sizes blur the separation boundary between the good and the defective samples

with the modeled delay. The RSM method is to ensure

that this error is a random error (in contrast to a sys-

tematic error). In the G-STM, we therefore introduce
a Gaussian noise (mean 0, standard deviation 3%) to
every modeled delay random variable.

Post-silicon defect-based STM (D-STM): If we extend the
G-STM to include a statistical defect model, then we obtain
a defect-based STM that allows the Monte Carlo simulation
to produce defective samples. Our statistical defect model
contains several parameters that can be changed to alter the
defect assumption: (1) We can inject kD defects randomly
on kD pin-to-pin delays. (2) Each defect size is minD + XD

where XD iS sampled from a random exponential distribution
model [251: (l/i)e-(11/)xD and minD is the minimum size.
The parameter can be thought as the average size increase
from the minimum. We usually set equal to a third of
the maximum circuit delay on 1000 Monte Carlo samples
in G-STM based simulation.
We assume that each pin-to-pin delay on a flattened cir-

cuit has an equal probability to receive a delay defect and a

defect always increases the delay.

4 Binary Classifier - SVM
To illustrate the binary classification problem discussed

in Figure 3, Figure 8 shows three simulation results based
on an industrial custom design Ind32. The simulation is
based on a 15-detect transition fault pattern set consisting of
2165 patterns. For each sample, we plot its maximum delay
observed during the simulation of all these patterns. The
single-defect assumption is used in the D-STM, i.e. kD = 1.

In this experiment, the good samples are simulated samples
based on G-STM and the defective samples are simulated
samples based on D-STM.

In plot (a), a large minimum defect size minD = 1800ps
is used. In this case, we see that there exists a clear timing
boundary to separate the good samples from the defective
samples. This is not true for plots (b) and (c). Notice that
in plot (c), the transition from the good distribution to the
defective distribution is smooth and hence, there does not
exist a clear way to divide the "aggregate" distribution into
two parts.

INTERNATIONAL TE'

The two distributions in plot (b) and plot (c) can be sepa-

rated by training a binary classifier as illustrated in Figure 5
before. One popular classification algorithm in recent years

is Support Vector Machine (SVM) learning [11]. SVM is
popular because of its theoretical proven properties in gen-

eralization of its learning results based on the VC dimension
theory.
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Figure 9. A 2-dimension linear classifier [11], page 97
Figure 9 depicts a simple example to help understand the

basic principle of SVM. In this example, the two classes,
"x" and "o", cannot be separated based on either the x

dimension (1st feature) or the y dimension (2nd feature)
alone. However, on the 2-dimension plane, the two classes
are separable by a line. In general, given a set of 2-class
samples, depending on how the "x" and "o" samples lo-
cate, they may not be separable by a line on the 2-dimension
plane. However, in theory, if we go into a higher dimension
(by adding more features), there may exist a smallest n such
that on the n-dimension space, we can find an n -1 dimen-
sion hyperplane that separates the two classes of samples
[6].

One of the simplest SVM algorithms is the maximal mar-
gin classifier [ 11]. The algorithm tries to find the separation
boundary that maximizes the separation margin R as shown
in the figure. SVM is a kernel method [11] which means that
it utilize a pre-defined kernel to map the original features
(pattern delays) into kernel-inducedfeatures. Then, in this
kernel-induced feature space, a linearly separable boundary
is searched.

Only the samples closest to the separation boundary are

required to decide the boundary. In SVM, they become the
support vectors (support samples) of the classifier. One can
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think of the number of the support vectors as a measure of
the complexity of the learned model. Another way to look
at it is that, we can discard all non-support-vector samples
in the training data, and the learning accuracy would still be
same.

Table 1. Three-fold cross validation SVM experiments
minD avg. SVs avg. (screening) accuracy 1 -clock
300ps 394.3 94.36% 23.3%
600ps 304.7 92.53% 59.2%
900ps 186 98.26% 75.5%
1800ps 84.3 100% 100%

Table 1 presents results based on three-fold cross-
validation SVM experiments [26]. In these experiments,
we use pattern delays as the feature values, i.e. dij is the
pattern delay in Figure 5. In each case, there are 1000 good
and 1000 defective samples. We divide these samples into
three sets. In each run, two sets are used for training the
SVM and the other one is used for measuring the learning
(screening) accuracy. In each case, the table reports the av-
erage number of support vectors and the average accuracy
from the three experiments . The "1-clock model" is the
accuracy if we simply find the best point along the timing
axis (in Figure 8) to separate the good and the defective dis-
tributions, i.e. it corresponds to the traditional way of delay
testing.

The number of support vectors increases as the defect
size decreases. From Figure 8, we know that it is harder
to separate the two distributions in the 300ps case than the
other cases. As a result, we see that it has the largest number
of support vectors, which means the SVM model is more
complex.

Figure 10-(a) plots the delays of the miss-classified sam-
ples. A test escape is a defective sample classified as a good
sample. An overkill is a good sample classified as a de-
fective sample. Notice that all test escapes have delays are
within the range of the good delay distribution (which is
[1650,1933]). Take the 600ps case as an example. From
Figure 8-(b) before, we see that there are more samples in
the good delay distribution range [1650,1933] than those
outside. From a learning point of view, it is easier to decide
those samples outside the range and harder to decide for the
samples within the range. On the other hand, in the 300ps
case( Figure 8-(c)), we see that many defective samples hav-
ing delays similar to good sample delays. As a result, over-
kills happens. Note that these are the results of a classifier
that is optimizing overall accuracy with no-preference for
minimizing test-escapes or overkill.

In SVM, we can adjust the decision threshold to explore
the trade-off between test-escapes and overkill with a re-
ceiver operating characteristics (ROC) plot [28] as shown
in Fig 10-(b). From this plot, observe that if we want no test-
escapes (100% true defect rate), there will be 30% overkill.
Due to limited space, for the rest of the paper we will focus

minD
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200
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Over-kills - 300ps

T pi at= A
Test escapes -300ps

1650 1700 1750 1800 1850 1900 1950
Delay (psec)

(a) Distributions from miss-classified samples
1 ~~ ~ ~~~~~~~~~.........

0.0O.8

~07Ci
0).6

1 05

04
0 0>05 0.1 0.15 0.2 025

False Defect (Overkill)
0.3

(b) ROC curve for 300 ps case

Figure 10. Analysis of SVM Classifier Results

on optimizing overall learning accuracy although we note
that it is possible to use a ROC plot to select an economi-
cally optimal trade-off.

4.1 Sample size Vs. the number of support vectors
In silicon samples based test optimization, one critical

step is to judge if the samples given to us are sufficient or
not. A common way to decide this is to observe that adding
more samples does not improve learning accuracy further.
Obviously, the result depends on the power of the learning
algorithm and hence, we would like to pick the best learning
algorithm known to us.
A key aspect of SVM is it's strong connection to VC the-

ory. The fewer support vectors, the greater generalization
can be expected. The average generalization error erroravg
of SVM is bounded by [11]:

#SV
erroravg <M (1)

where #SV is the number of support vectors and M is
the sample size. If the learning is effective, the number of
support vectors is much less than the number of training
samples and the growth on the number of support vectors is
much slower than the growth of the sample size.
When the growth of #SV is much slower than the growth

ofM (as we continuously increase M), we see that asymp-
totically, #SV -> 0. One thing to note is that #SV is a theo-
retical bound on the generalization error and is a very loose

INTERNATIONAL TEST CONFERENCEPaper 17.1 6



minD=1 800ps

minD=900ps

minD=300ps

1t< -,i* -0.45 X 300ps

CO) 0.4-
0.35 -

minD=600ps 0.3 600ps
0.25

0.2 9O\ p
015 \

0.1
0.05 o800ps

75A
,o,~, 4° e° A,bO 61 ssO s #of samples

(a) Accuracy trends
,60 e0 §o !,O ,o , , #of samples o

(b) #SV trends a
M

#SV / M
0.45

0.4 -

0.35

0.3

0.25-

0.2 i-=

0.15 -

0.1 #SV/M
0.05

Accuracy %
94

- > Trends flattens
== 92

Generalization - 0

accuracy 88

86

84

82

,6 ,t, , e, g,b,#Samples
(c) 600ps case, doubled sample size

Figure 11. Accuracy trends and #SV trends (in three-fold cross-validation experiments) as sample size grows

bound [11]. Hence, in practice, we do not expect to observe
that SV -> 0.

Figure 11 shows the trends of accuracy and the quantity
#SV as the sample size grow. In plot (a), for the easy cases,
1800ps and 900ps, we observe that the accuracy percent-
ages flatten out at some points. In plot (b), we see that #SVM
decreases as sample size increases. In these plots, it is hard
to decide that the sample size 2000 is enough. In plot (c), we
double this size to 4000 and show the 600ps case. We can
clearly observe that both trends flatten out at about 2000.
In this case, we know that 2000 is enough - adding more
samples does not help SVM to develop a better classifier.

In a typical statistical learning experiment, the accuracy
trend is perhaps the only reference to decide on the sam-
ple size. For SVM, the trend of #SV can aid this decision.M
This is a nice feature of SVM, which other methods do not
provide. Judging based on both trends gives us a higher
confidence what sample size to use than judging based on
the accuracy trend only.
4.2 Comparison to a multiple-clock scheme
A multiple-clock scheme is another way to enhance the

screening power of a test set [27]. For example, we can
apply PB-STA to a set of patterns and collect those whose
delays are similar. This strategy can be used to divide the set
into groups of patterns and then we can associate a test clock
with each group [20]. Because the patterns in each group
have similar delays, tighter clocks can be used to enhance
the screening for small delay defects [20].

Table 2. Comparison to a 10-clock scheme
10 clocks from Table 1

minD multi-clock acc #SVs acc #SVs 1-clock model
300ps 77.47% 90.05% 595 94.54% 407 23.3%
600ps 89.37% 91.86% 466 92.07% 315 59.2%
900ps 96.49% 97% 321 98.4% 208 75.5%
1800ps 100% 100% 121 100% 88 100%

Table 2 shows the results by applying a 10-clock scheme
using the strategy above and the PB-STA statistical analyzer
[8]. In binary classification, each data value dij of a pat-
tern j on a sample i (in Figure 5) now becomes an integer
k where k C {1, 2,. . ., 10}, i.e. the pattern delay is greater

than the (k -1 )th clock period but less than or equal to the
kth clock period. The last three columns are copied from
Table 1 where the SVM training was based on the data ma-
trix that consists of the actual pattern delays.

It is interesting to observe that the multiple-clock scheme
does show significant improvement from the 1-clock model.
However, its screening capability is still less than that using
a binary classifier. The difference becomes more noticeable
as the classification problem becomes harder. It is also in-
teresting to observe that by discretizing pattern delays into
10 ranges in the training data matrix, the learning accuracies
degrade and the numbers of support vectors increase. This
is understandable because the new data matrix provides less
resolution on the delays.

5 Feature selection and test optimization
In our binary classification, a feature is a pattern's delay.

It is intuitive to recognize that not all patterns are neces-

sary for training a classifier. Some provide more separation
power on the samples than others. If we are restricted to use

only a fixed number of patterns, we would like to select the
patterns that together, provide the greatest separation power.

This problem is calledfeature selection in machine learning
[28]. And a common approach to begin the feature selection
is to calculate the Fisher discriminant ratio (FDR) for each
feature and use these FDR scores to rank the importance of
features [28]. Therefore, we begin our discussion with the
FDR calculation.

5.1 Fisher discriminant ratio (FDR)

Suppose that we are given M good samples G
{sl,...,sM} and L defective samples D {s, ...,s'}. For
a pattern p, suppose that applying the pattern on these
samples obtains the delay data [gj,...,gM] for the good
samples and [d1,...,dL] for the defective samples. Let
(g = (iMIgd)/(M,Ld = (hial di)/L, and = ((jMI gi) +
(ildi))I(M+L). We have:

(ag)2 + (ad)2

between-group variance
within-group variance

(2)
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FDR is a popular statistic to measure the separation power
of a feature [28]. The numerator indicates how well the
pattern separates the good samples and the defective sam-
ples as two whole groups, i.e. the between-group variance.
The denominator measures how the pattern differentiates
samples within each group, i.e. the within-group variance.
If FDR(p) is larger, it is more likely that this pattern has
greater separation power.

FDR score
0.18

0.16 L

0.14 t

0.12

0.1 \

0.08 -

0060

0.04-

0.02

1800ps
900ps

600ps
L----- 300ps

1 201 401 601 801 1001 1201 1401 1601 1801 2001
Pattern Number

Figure 12. Sorted FDR scores across all patterns
Figure 12 shows the resulting FDR scores on the 2165

15-detect transition fault patterns. For each case, the FDR
scores are sorted. We are interested in observing the trends.
There are two noticeable trends in this figure. First, the FDR
scores on a harder case (300ps) are consistently smaller than
those on an easier case (1800ps). This is understandable be-
cause smaller FDR scores mean less separation power as
discussed above. Secondly, there are about 200 patterns
whose FDR scores are much larger than the rest. From 200
to 2000, the FDR scores do not change much. After 2000,
the FDR scores approach to zero quickly.

5.2 FDR can be misleading
In a typical feature selection process, if we wanted to se-

lect a subset of features (patterns) based on the FDR rank-
ing, we would probably begin by including the first 200 pat-
terns. However, FDR scores can be misleading due to "de-
terministic factors". Consider the situation if there exists a
pattern q such that q produces a large delay only on a sin-
gle defective sample s. For all other samples, q's delays are
similar and we have 1g j.idr p in the FDR calculation.
In this case, FDR(q) is very small. On the other hand, for
all other patterns, the delays on s are close to their average
delays on the good samples. Then, we know that q has the
greatest power to separate s from the good samples, and it
is likely that without q, s cannot be separated. While it is
clear we want to include q if we rely on FDR(q), we would
have discarded pattern q due to its small FDR score. The
above discussion explains that in our feature selection, there
are some "deterministic" factors involved. Hence, the fea-
ture selection problem is not entirely statistical. The FDR
statistic treats the set of good samples and the set of defec-
tive samples as two distributions. Hence, FDR score does

not reflect the characteristics of individual samples. This
motivates us to develop a new statistic that can reflect the
characteristics of individual samples.

5.3 Statistics based on individual samples
Given a pattern p, let pp be the mean delay value of p

averaging across all good samples. Note that the delay value
on each sample can be a discretized value as described in the
10-clock scheme experiment before. For a given defective
sample t, let dp be the delay value of p on t. We define the
deviation distance of pattern p on sample t as

Dev(p,t)= Idp- yp (3)

Then, for sample t, we select the pattern whose deviation
distance is the largest among all patterns. If we collect all
such patterns from all defective samples, we obtain the set
of baseline patterns. For the 1000 defective samples in the
experiments, the following shows the number of baseline
patterns.

Table 3. Results of selected baseline patterns
minD 900ps 600ps 300ps

# of selected patterns 240 248 281
Accuracy using baseline patterns 93.25% 90.42% 85.78%
Accuracy using FDR ranking** 89.9%** 84.08%** 82.28%**
Accuracy- all patterns, Table 2 97% 91.86% 90.05%
**if the same number of patterns are selected following the FDR ranking.

In Table 3 we ran binary classification experiments based
on these baseline patterns and first compared them to sim-
ilar number of patterns selected by FDR rankings. The ac-
curacies from FDR are consistently lower than those from
the corresponding baseline pattern sets. The we compare
the accuracy results to those listed in Table 2 where all pat-
terns are used. The differences in accuracy can be clearly
observed. This indicates that the baseline patterns are not
sufficient.

5.4 Selecting additional patterns
To select more patterns, we have two intuitive options:

(1) We can include additional patterns by going back to the
FDR ranking (The result above does not necessarily imply
that this is a bad strategy for selecting additional patterns).
(2) We can expand the baseline pattern set by select the top
K patterns from each sample based on the deviation dis-
tances. Figure 13 shows the results using option (1) and
Table 4 shows the results using option (2).

In Figure 13, the x-axis is the percentage of the remain-
ing patterns (excluding the baseline patterns) to be added
into the baseline pattern set. For the 300ps case, we see that
the accuracy would not peak until 70% of the remaining
patterns are added.

If we project the accuracy results from Table 4 onto the
accuracy results in Figure 13, we obtain the results shown
in Figure 14 (on next page). This clearly shows that option
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Figure 13. Accuracy results as we add more patterns
to the baseline pattern sets, by following the FDR rank-
ings in 300ps, 600ps, and 900ps cases

85
0 10 20 30 40 50

% of the remaining patterns included

Figure 14. Projection of the results from Table 4 onto
the plot in Figure 13 to compare the effectiveness of the
two options of selecting additional patterns

Table 4. Expanding the set of baseline patterns
patterns per sample K= 1 K 2 K =3 K= 4

300ps # of selected patterns 281 481 668 820
300ps learning accuracy 85.78% 87.58% 88.31% 88.82%

300ps #SVs 540 521 511 510
600ps # of selected patterns 248 434 582 715
600ps learning accuracy 90.42% 91.45% 91.86% 91.6%

600ps #SVs 413 378 384 395
900ps # of selected patterns 240 419 559 678
900ps learning accuracy 93.25% 95.89% 96.14% 96.14%

900ps #SVs 306 246 247 255

(2) above is a better strategy than option (1), i.e. even after
the selection of the baseline pattern set, following the FDR
ranking can still be misleading.

Table 5 presents the results of Table 4 from a different
perspective. Here we are interested in observing the trend
on the number of additional patterns included from K -1

to K, as K increases. Notice that this number decreases as

K increases. Moreover, these numbers are smaller if the
classification problem is easier.

Table 5. Trend of pattern increase as K increases
# of patterns selected per sample K -1 K - 2 K - 3 K - 4
300ps: # of additional patterns 281 200 187 152
600ps: # of additional patterns 248 186 148 133
900ps: # of additional patterns 240 179 140 119

In Table 4, we see that the number of support vectors
does not change much as more patterns are selected. This
indicates that the generalization of the learning accuracy
results is rather independent of the pattern selection, ex.
the confidence levels are similar between generalizing the
85.78% result to the unseen samples in the 300ps case from
K = 1, and generalizing the 88.82% result from K = 4. This
is a desirable property to have.
6 Additional experimental results

Table 6 summarizes the results from additional bench-
mark circuits, both using all patterns and the optimized
deviation-distance based pattern set with K= 1. All the
SVM results show marked improvement over using a single
clock or 10 clocks in the multiple-clock scheme [20]. Over-
all, the optimized set has lower complexity and comparable

or improved accuracy. An exception is c1355, in which the
accuracy seems to decline significantly. This seems to be
because the number of patterns in the K = 1 optimized set
is rather small. The test escape and overkill percentage is
also presented. Once again, we note that it is possible to ex-
plore the trade-off between these numbers by adjusting the
decision thresholds in SVM, as illustrated in Figure 10-(b)
before.

7 Note on simulation based pattern selection
Table 7. Minimal Slack patterns: Ind32

1-slack 2-slack
Pattern Set #Patterns #Patterns

Unadjusted P-STM 323 428
Adjusted P-STM 383 509

Patterns shared by both 186 256

In Section 1.3, we use Figure 6 to illustrate two ap-
proaches for test optimization. For the simulation-based
approach, one interesting question raised in Section 1.2 is
how the accuracy of a statistical timing model would im-
pact the pattern selection based on PB-STA [8]. We con-
ducted an experiment to answer that question. First, we
used the P-STM in PB-STA to select a set of patterns. Then,
we used G-STM to produce a set of samples and applied
the Bayesian parameter learning in [9] on these samples to
learn the spatial delay correlations assumed in the G-STM.
These correlations are quantified by a correlation coefficient
p. The learned value of p are applied to the P-STM and we
ran PB-STA to select a new set of patterns. We are inter-
ested in comparing these two sets of patterns in terms of
their overlap.

Table 7 shows the number of patterns that are selected
using the unadjusted and adjusted P-STMs. It is interesting
to note that the patterns chosen are significantly different
as the intersection between the patterns has only about half
the number of patterns chosen. However, when we applied
the in SVM learning experiments, we found that the SVM
accuracy of the pattern sets to be very similar. With different
circuits and defect models this result may not hold. Further
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Table 6. Summary of experiments
15-detect Deviation-distance-based optimized set Non-SVM Acc.

Circuit minD #Patterns Accuracy #SVs Overkills #Patterns Accuracy #SVs Overkills 1-clock. 10-clock.
Ind32 600ps 2165 91.86% 466 1.3% 248 91.04% 392 0.1% 59.2% 79.17%
c3540 650ps 5593 71.95% 860 11.35% 440 85.8% 607 1.05% 30.2% 65%
c2670 500ps 4296 72.45% 970 16.1% 282 88.05% 524 2.55% 12.3% 55.6%
c1355 400ps 3540 82.95% 912 5.85% 102 77.75% 763 2.2% 58.5% 72.8%
c880 300ps 1694 83.6% 626 6.2% 281 90.2% 487 0.6% 10.4% 53.3%

work needs to be done to examine how different aspects of
statistical timing model accuracy affects the classification
capability of the selected pattern sets.

8 Conclusion
In this work, we examined various issues in test set opti-

mization for screening small delay defects. The primary ob-
jective is to enhance the screening capability of scan delay
test with limited test patterns. We developed a framework
for using known-good and know-defective silicon samples
to build SVM classifiers, including metrics to evaluate if
we have sufficient samples. We introduced a deviation-
distance based pattern selection method for reducing the
number of patterns needed. We discovered that in our pat-
tern selection, the common statistics proposed for feature
selection are not effective [28]. One potential application of
this work is to facilitate adaptive test optimization, as illus-
trated in Figure 4. By using SVM learning techniques on
known good/bad silicon samples we hope to extend cover-
age from scan-based delay tests out to cover other test meth-
ods. Although this study was limited to simulation-based
delay tests and delay defects, the potential of the proposed
methodology can be clearly observed in Table 6. We plan
to extend our study to include industrial silicon data in the
future.
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