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ABSTRACT

Statistical static timing analysis (SSTA) has been a popular research
topic in recent years. A fundamental issue with applying SSTA in
practice today is the lack of reliable and efficient statistical timing
models (STM). Among many types of parameters required to be care-
fully modeled in an STM, spatial delay correlations are recognized as
having significant impact on SSTA results. In this work, we assume
that exact modeling of spatial delay correlations is quite difficult, and
propose an experimental methodology to resolve this issue. The mod-
eling accuracy requirement is relaxed by allowing SSTA to impose up-
per bounds and lower bounds on the delay correlations. These bounds
can then be refined through learning the actual delay correlations from
path delay testing on silicon. We utilize SSTA as the platform for
learning and propose a Bayesian approach for learning spatial delay
correlations. The effectiveness of the proposed methodology is illus-
trated through experiments on benchmark circuits.

Categories and Subject Descriptors: B.8.2 [Hardware]: Performance
and reliability

General Terms: Algorithms, Design, Performance
Keywords:Statistical timing, Bayesian learning, delay correlations

MOTIVATION OF THE WORK

Statistical static timing analysis (SSTA) has attracted much atten-
tion in recent years (for example [1-6]). SSTA is attractive because
traditional worst-case corner timing analysis has become overly con-
servative due to the magnitude of process variations at 90nm nodes and
below. SSTA aims to recover the timing margin that is lost due to the
unrealistic pessimism in traditional worst-case timing tools. Recover-
ing this lost margin can give additional flexibility to design optimiza-
tion tools and facilitate design timing closure.

Currently, if we were to take advantage of SSTA technology in prac-
tice, one immediate challenge would be obtaining a reliable and effi-
cient statistical timing model (STM). The difficulties are twofold: (1)
The statistical data required to develop a reliable STM may not be
easily obtainable from a foundry. (2) Characterizing and representing
statistical information in a statistical timing model can be much more
expensive compared to traditional worst-case corner methods.
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As discussed in [7], there are several issues in process variabil-
ity modeling and characterization, which may impede modeling for
a statistical static timer. Statistical process characterization demands
tremendous silicon and test resources and hence, is usually not done
frequently. Careful tracking of parameter variations over time can be
overly expensive, which leads to gradual decrease in accuracy of a
process variability model. Moreover, there are other sources of vari-
ability such as environmental sources of variability and systematic
layout-dependent variability which may be hard to characterize early
in a design cycle. These issues, due to either economic reasons or
methodology-related reasons, make worst-case modeling favorable, as
modeling just the worst-case bounds reduces the inter-dependency be-
tween process characterization and timing modeling.

Among the many types of parameters that need to be carefully con-
sidered to develop an STM, spatial correlations are recognized to have
significant impact on design timing [8,9], and hence on SSTA analysis
results [2,3]. Characterizing spatial correlations across device and in-
terconnect parameters (such as Ley ¢, Vin, ILD) can be complex and
resource consuming [10]. Moreover, it is not entirely clear how to ef-
fectively model (or aggregate) spatial correlations based on parameters
of devices and interconnects [10] into the spatial correlations based on
delay elements at the cell level [2] [3] for efficient cell-based SSTA. In
addition, correlations may exist between different parameters, which
can further complicate the modeling issues [10].

Path delay testing
on 1% silicon

correlation

Assumed spatial i Post-silicon
delay correlation SSTA [P Bayesian Learning
bounds [LCBy, UCBy]
! distance
Adjusted bounds
Pre-silicon phase { [I_JCBa, UCBa] (b) LCB,UCB
(a) SSTA leaining

Figure 1: Refined SSTA through Bayesian learning of correlations

In this work, we assume that SSTA is cell based. We also assume
that obtaining an accurate model on spatial delay correlations at the
cell level is difficult. To relax the accuracy requirement on correlation
modeling, we assume that SSTA is given an upper-bound model and
a lower-bound model of spatial delay correlations. For example, we
may assume that the true spatial delay correlation is a smooth distance-
based function [9]. Because we do not know the exact shape of the
function, we assume an upper-bound step function and a lower-bound
step function to bound it (as illustrated in Figure 1). The naive upper
bound model is to assume that all delay elements are 100% correlated.
Similarly, the extreme lower-bound model is that all delay elements
are fully independent. Our objective is to refine these bounds through
learning from the results of path delay testing on the silicon.

Figure 1 should be viewed as a timing margin recovery methodol-
ogy, rather than a methodology for design timing closure. How to take
advantage of the recovered margin is not suggested, and can be up
to the user. In this work, we focus the discussion on developing the
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methodology. We note that the learned spatial delay correlations are
aggregate results from both design-related and process-related sources.
Hence, the learned correlations are based on cell delay elements rather
than on individual device or interconnect parameters.

Our learning approach is Bayesian based so that the estimation of
correlations can take a prior into account. In the proposed method-
ology, the prior is the initial spatial delay correlation bounds [LC By,
UC By]. After learning, we calculate a posterior that provides adjusted
bounds [LCB,,UCB,]. It is important to implement a Bayesian
based learning so that posterior bounds can be the prior for learning in
the next run. In contrast, traditional maximum likelihood based statis-
tical inference does not support this prior-posterior iteration [11].

Given that the correlations are constrained within [LC B,,UCBa],
what correlation values 6 € [LCBa,UCB,] cause the worst-case
timing in SSTA? This issue is crucial as we do not want SSTA to re-
port optimistic results. Hence, we need to make sure that SSTA with
6 = LCB, and SSTA with § = UCB, also represent the lower and
upper bounds on the worst-case timing. Otherwise, we need to imple-
ment a search method to find such a worst-case .

The rest of the paper is organized as the following. Section 2 re-
views the background of SSTA and illustrates the impact of spatial
correlations on SSTA results. Section 3 studies this impact in detail
and suggests the use of UC B, in SSTA for obtaining the worst case.
Section 4 presents our Bayesian learning method. Section 5 summa-
rizes the experimental results. Section 6 concludes the paper.

2. BACKGROUND

SSTA can be categorized into path-based SSTA [5] and block-based
SSTA [1,6], where various techniques to perform + and max of corre-
lated random variables based on Gaussian and non-Gaussian assump-
tions have been proposed. How to model and handle spatial corre-
lations in SSTA is also an important research topic. Various spatial
correlation models have been introduced [2, 3].

Our work was inspired by the work in [4] where several interesting
observations were made regarding the practical use of statistical timing
methods. Suppose we are given with a n-stage path. Suppose that the
delay of each stage 7 can be characterized as a Normal distribution
d; ~ N(pi,o?) for 1 < i < n. The path delay P, is simply the
summation of these n Normal distributions: Py ~ N (1, o%)
P07+ 257, B i (pijoio;)

pi; = 1fori = j and p;; for ¢ # j denotes the correlation between
the delay d; and delay d;. If p;; = O for all ¢ # j, i.e. delays are
mutually independent, then we see that 0 = 0i,q = /X0 02. If
pi; = 1forall ¢, j, i.e. delays are fully correlated, then we see that
R ,0f + 282,57, (0i0;) = T, 0u.

If pi; = as; forall ¢ # j where 0 < a;; < 1, we have
Tr,of + 25 X (aijoio;)
Similarly, we can define o} by letting p;; = b;;.

For simplicity, we assume 0 < a;; < b;; < 1forall? # j. Then we
see that 04 < 04 < 0p < Ofun. Because correlations do not impact
the resulting mean p, we can also say that y + 304 < p + 30, <
1+ 30y < i+ 30 fuu. In other words, the 30 worst-case delay of the
path increases monotonically as the correlations increase. The upper
bound is when p;; = 1 and the lower bound is when p;; = 0.

where p = X7y, and 0 =
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Figure 2: ¢2670 timing distribution (x-axis is in psec)

The analysis based on this simple path view gives the intuition on
why delay correlations are important. Without knowing the actual cor-
relations between delay elements, we can only bound the actual path
standard deviation o to be between 0,4 and o s, Figure 2 presents
the Monte Carlo simulation results of the worst-case delay points on
1000 samples (occurrences) on the benchmark c2670 based on a 90nm
statistical cell-based timing library characterized in the past [12]. In
the fully-correlated case, we assume all delay random variables are
100% correlated. If we assume that delays are neither totally inde-
pendent nor fully correlated, we would expect the worst-case delay
distribution to be somewhere between these two extremes.

3. BOUND ON WORST-CASE TIMING

In this paper, when we refer to worst-case timing, we are referring
to a simple notion of the 3-o value of the circuit delay distribution of
a combinational circuit. Thus the only operations we are concerned
with are addition and max. It’s quite clear that the worst case value of
a sum of random variables increases monotonically with a monotonic
increase in the correlations between the variables. That is given n
delay random variables d; ... d,, their correlations can be specified
with a symmetric positive semi-definite 7 X n correlation matrix p =
[pi;]- Suppose we have bounds on this matrix U and L. Let U = [U;;]
be another symmetric positive semi-definite matrix such that U;; >
pi; for all ¢, j. Similarly, let L = [L;;] be the matrix such that L;; <
pij forall i, j. Let A = X7, d;. From the previous analysis, we have
seen that a4 + 30 < pa + 30, < pa + 3oy where o, 0, and
oy are the standard deviations of A calculated using the respective
correlation matrices.

Hence, given [L, U] bounds on the correlations, we see that [ua +
3oL, pa+3oy] are also the bounds on the worst-case timing pa +30,
This is a result for a single path. However, in a real circuit, the circuit
delay distribution can be thought of as the result of applying a sequence
of + operations for the delays along each path and finally a single max
operation. Thus, increasing correlation will have an effect on both the
+ operations and the max operation.

Pa Pa
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Figure 3: A simple example of mixing + and max
Figure 3 shows a simple example by assuming an intra-path corre-
lation coefficient p, and an inter-path correlation coefficient p.. By
assuming that each delay element is Normal N (100, 10%), we plot the
3-0 worst case delay (max of the two paths) calculated from Clark’s
formula by varying p, and pc.

(a) n=1
Figure 4: p, dominates the 30 worst case delay calculation

(b) n=2 (c) n=6

In Figure 4-(a), the plot is with n = 1 (path length = 1), and hence
pa does not apply. We note that in this plot, we see a non-monotonic
effect on the worst case timing from increasing p.. With n = 2 as
shown in plot (b), we see that non-monotonicity nearly gone as the
worst case delay is dominated by the value of p,. Plot (c) shows a
similar case with n = 6. The monotonic dependency of the worst-
case delay on the value of p, can clearly be observed.

Note that in this simple example, p, impacts the + operations on
individual path delays and p. impacts the max of the two delays. If
we assume p, € [la, ua] and pe € [lc, uc|, we see that the worst-case
delay primarily depends on p, = u, and depends much less on pe.
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The dependency on p. diminishes when the path length n increases.
We can continue examining this on full circuits.
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Figure 5: Impact of increasing global correlation p

Figure 5 shows Monte Carlo simulation results on three benchmarks
and one industrial custom design, Ind32. In this experiment, we as-
sume a global correlation coefficient p applicable to all pairs of delay
random variables. We plot the percentage of change on the “x + 30~
worst-case point from the circuit delay distribution given by each p
value. We clearly see that this delay point increases as p increases.

In theory, we know that the “u + 30 worst-case delay based on
SSTA-computed circuit delay distribution using the upper correlation
bound UC B, may not be the true worst case. However, the analysis
shown in this section suggests that in practice, applying SSTA with
the UC B gives a good approximation on the worst-case circuit delay.
This assumption simplifies the methodology in Figure 1. Otherwise,
the methodology needs to include a delay maximization method to
search for the worst-case timing in [LC B, UCB].

3.1 Correlations vs. other modeling errors

In a cell-based STM, there are other ways for the model to be inac-
curate. How does the impact of spatial correlations compare to those
from other sources of modeling errors? We experimentally consider
other sources of modeling errors: (1) Random errors: A random zero-
mean Gaussian noise is added to each pin-to-pin delay in the model
with the standard deviation equal to 10% of the delay. (2) Sigma shift:
The standard deviation of each pin-to-pin delay is increased by 10%.
(3) Mean shift: The mean of each pin-to-pin delay is increased by 10%.
(4) Correlation 0.5: A global correlation coefficient 0.5 is applied to
every pair of delay variables. (5) Correlation 1: A global correlation
1.0 is applied. In addition, we use the case where all delay variables
are independent, i.e. correlation = 0 as the basis for comparison.
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Figure 6: Ind32 critical path delay histograms

We select the 1000 most critical paths based on the base case by
running block-based SSTA [6] on Ind32. For each path, we focus on
its “u + 30 delay point. Figure 6-(a) shows the path delay histogram
on the base case (“0 Cor.”). In addition, we also show the results of
applying the error assumptions (1) and (2) above. We observe that ran-
dom Gaussian noise and systematic shift of standard deviation do not
alter the path delay results much. In contrast, plot (b) shows the results
of applying the assumptions of (3), (4), and (5). We can clearly see
the impact of delay correlations on these path delays. The simple ex-
perimental analysis demonstrates the importance of correct modeling
of spatial delay correlations and therefore, motivates us to develop a
method to learn the actual correlations from silicon.
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Figure 7: Bayesian inference: Pr(6|D, H)

Bayesian parameter estimation is a framework for estimating un-
known system parameters ¢ given observed data vector D and an as-
sumed hypothesis space H. Figure 7 illustrates the concept.

Pr(D|0, H)Pr(0]H)
Pr(D|H)

Equation 1 re-states the Bayes rule [11]. The evidence can be ex-
pressed as Pr(D|H) = ngr(5|§, H) Pr(6/H) df, which is the
normalizing constant to make the posterior a valid probability density.

In learning spatial delay correlations, we assume that the parameter
space consists of k correlation coefficients § = [p1,..., px]. Asan
example, one can model the spatial correlations by a distance-based
function such as that illustrated in Figure 1 before. Then, each p; can
be the value at a step in the distance-based step function, i.e. if the dis-
tance between two delay elements is between a given range [¢;, ci+1],
then their correlation is estimated as p;. In the extreme case, if we are
given n delay variables, we can assume k = nCs, i.e. each pair of
variables has a unique correlation between them.

For each p;, we assume that p; falls into a range [l;, u;]. We let
UCB = [ui,...,ux] and LCB = [li,...,l;]. Hence, the hypoth-
esis space H is the vector space bounded by UCB and LCB. In
between UC B and LC B, because initially we do not have knowledge
on 6, we can assume a uniform distribution in the space, i.e. for each
pi, Pr(pi € [z,y]) = |y — z|/|ui — li| for l; < z < y < u;. We note
that the learning framework allows any distribution to be specified in
the prior, as long as it is efficiently computable.

likelihood X prior

Pr(6]D,H) = , 1.e.posterior =

1)

evidence

4.1 Naive method for correlation learning

The naive method for learning correlations via path delay testing is
to measure the delay of a path, apply the measured value to a theoret-
ical path delay formula and solve for the correlations. This method is
extremely unrobust since there are many other factors that affect the
path delay. For example, there may be a systematic error in the char-
acterization of the individual delay elements that is manifest as a shift
in the mean or standard deviation. It is therefore very risky to use
correlation to explain the absolute delay observed.

4.2 Overview of our approach

Instead of basing our learning on absolute path delays, we utilize
path delay correlations as the measured data. This makes the learned
results less sensitive to other modeling errors such as systematic shift
in the mean or sigma discussed in Section 3.1 before. This point will
be illustrated later in Section 4.7.

In our method, we measure the delay correlation between paths and
derive the theoretical correlation between paths as a function of the
individual delay element correlations. If we were only interested in
obtaining point estimates of the individual delay element correlations,
we could directly solve for the individual delay element correlations.
However, we’re interested in using the Bayesian framework to obtain
the confidence of the point estimate. Thus, we derive the likelihood
function for an observed path correlation and provide a method for
determining the mean and standard deviation from the posterior prob-
ability density of the individual correlations.

4.3 Measuring path delay correlations

Given two paths P,, P, suppose that we can measure their path
delays on ¢ silicon samples to obtain the measurements M, [x1,
.., z¢] and M, [y1,...,y¢], respectively. We assume that this
can be achieved by varying testing frequency in path delay testing.



There are several test related issues to be resolved in order to ensure
accurate measurement of these path delays. These issues include, how
to generate a test pattern to sensitize a path but not other paths, how to
apply the test pattern in a scan mode properly, etc. We do not go into
these issues because they are out of the scope of this paper. However,
we note that the selection of P,, P, can be flexible in our methodology.

Given M., M,, we calculate the Pearson’s correlation coefficient:

Bi(zayi) — (Ziwi) (Bays) /t )

VEi(2?) — (Biwa)?/ty/Ei(y?) — (Siwa)?/t

We call 7,5 a measured path correlation. For learning, our data
space D consists of several measured path correlations.

4.4 Bayesian inference of  based on r,;

Given 745, we would like to express the likelihood as a function of

6. Let P, consist of n delay elements {a1, ..., a,} and let P, consist
of m delay elements {b1, ..., bn}. By assuming Gaussianality on all
random variables, we have

=1 Z;n—_q Cov(ai, b;)

Cop = Corr(Pa, Py) = pa
Pa“ Py

Tab =

3

where Cov(ai, b;) = pla;b;)0a, b, and
2 n 2 n n
Opa = 241 0a; +23 004 Z]‘:i+1 Pla;a;]%a;0a;
2 n 2 n n
Tpp = D2oim1 Oty T 220501 2 Plbib;]Tb; Ob;

We note that Plasb;)s Plaa,]» and piy, b;) can be determined from the
parameters in 6 and the distances between a; and b;, between a; and
a;,and between b; and b;, respectively. o4, and o3, can be determined
from the given statistical timing model. Let 6, = [0q,,...,04,] and
Gb = [Oby,. .., 0b,, ). Then, we see that equation 3 says that Cy is a
function of 0, oy, and 73:

Cab = Corr(Pa, Py) = (0,04, 6%) @)

Given Cyp, we ask the question: what is the probability of observing
Tab, i.6 What is Pr(rq,|Cas)? Because o, and g3 can be determined
from the timing model, the only unknown is 6. Hence, we can re-
phrase the question as: what is the probability Pr(rablé)?

Suppose we can express Pr(rqs|0) = g(Tab,6). We see that given
a set of values on the parameters in 6, we can calculate the probability
of r4p. It is more interesting to see that if we are given a value of 745,
g becomes a function h,_, (5) that entirely depends on § only. Multi-
plying k.., (§) with the prior Pr(6]H) and normalizing the result, we
can obtain the posterior probability distribution Pr(é]rab, H).

Recall that equation 2 is an estimation of the true path correlation
Cab based on the observed samples. Hence, 745 in essence is also a
random variable characterizing the sampling distribution of the cor-
relation coefficient. This sampling distribution is actually a skewed,
non-normal form. If we express Pr(r,5|0) directly with 745, 9(Tab, 5)
becomes complex and hard to manage. Thus, it is convenient to take
the Fisher Transformation of ., [13] and obtain a new statistic 245 SO
that the result is mathematically more manageable. After the transfor-
mation, z,» can be expressed as a Normal distribution whose mean is
the transformation of the theoretical correlation Cy;, [13]. Hence, we
have (the resulting equation 5 is a Normal distribution):

Let zqp = tanh lry, = 1 ln(ﬁm) (Fisher Transform [13])

tanh 'Cap and let o, = —=

Let :u'zab = T3

-~ (zab"‘#znb )2
2(¢—3)
Vamyt—3
In the actual application of equation 5, rq; is a value calculated
using equation 2 based on the measured path delays on the ¢ sample

chips. Cop = f (6 Oa,0b) is calculated based on a simple path-based
SSTA on the two paths P,, P,. We note that in this path-based SSTA,
Ga, 0 are calculated as vectors of values based on the timing model.

Pr(raplf) = g(ras,0) ~ N 5)

(/—qub ’ O'Zab) =

However, § is kept symbolically because it is the unknown vector of
parameters to be estimated. Once the value r,; (and hence ’i‘”’) is
determined, equation 5 expresses Pr(rqy|) as a function of 6 only,
i.e. denoted as hr_, (67) as mentioned above. Hence, we have

Pr(0|ras, H) < Pr(ras|d) * Pr(d|H) = h 6)

o0 (0) % prior

4.5 Fromr,, to R = {r,...,r:}

In the above analysis, we establish a likelihood function given a sin-
gle sampled delay correlation between a pair of paths. To extend this
likelihood function for s pairs of paths, ideally, we would replace the
scalar correlation 745 with a vector of correlations B = {ri,...,ms}
and directly obtain a joint likelihood function over the s observations.
However, to our best knowledge, there is no closed form for such a
function with multiple Pearson correlations. Our solution is to use a
Naive Bayesian approach [11]. This approach assumes that the differ-
ent observations r;are conditionally independent. Although this may
be flawed, it is an assumption that is often used to simplify Bayesian
approaches.

Pr(R|0) = Pr(r1|0) = Pr(ra|f)... x Pr(ry0) = hz(0) (7)
In other words, the multivariate likelihood function is the product
of the individual likelihoods. Multiplying the multivariate likelihood

with the prior, we have

- -

Pr(6|R, H) < Pr(R|6) « Pr(6|H) ®)

To normalize Pr(ﬁ}g) % Pr(0]H) for obtaining the probability den-
sity function for Pr(GlR H), we need to calculate [; (Pr( R|0)
Pr(6H)) d which can be quite complicated. Because our objective
is to learn the statistics such as the mean and standard deviation of the
estimated 6 in order to get a confidence interval on §, it is not necessary
to explicitly express the probability density Pr(6| R, H).

4.6 Rejection sampling

To get the mean and standard deviation of the posterior Pr (4|, H),
we utilize rejection sampling method [11]. Although there are more in-
volved methods such as Metropolis-Hastings sampling, rejection sam-
pling is sufficient for our purposes. In rejection sampling, we first draw
a random sample 5 from the parameter space 6 accordmg to the prior
Pr( 9]H ). Recall that we can assume a prior where in H, § has a multi-
variate uniform distribution in [LC B, UC B] to begin with. Then, we
need to decide if the random sample ' should be accepted or rejected
according to the likelihood hﬁ(g) in equation 7 above.

To implement the rejection sampling, we need to find the maximum
point max = max{hz(p)|V5 € [LCB,UCB]}. This can be done
through numerical maximization using a standard mathematical soft-
ware package. Then, we let h’ﬁc = hg/maz so we know that V7,
h%c (p) < 1. The rejection sampling is shown below.

Randomly draw a sample g’ according to the prior.
Randomly draw a sample u from distribution U (0, 1).
Ifu< h;i(ﬁ), accept §'as a sample. Otherwise, reject .
Repeat process until there are sufficient samples or conver-
gence criteria is met.

After we obtain sufficient samples, we can then calculate the sam-
ple mean p,; and sample standard deviation o,,, for for each of the
parameters, p;. This allows us to estimate a confidence interval such
as [lup, — Op;, fo; + 0p,] for each correlation parameter p;.

It is interesting to note that we can store the un-normalized posterior
(Equation 8) and reuse it as the prior for the next run of learning, for
example, based on a new set of sample chips. Hence, for the new run,
we could replace H with Equation 8 when drawing the sample 7.
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4.7 Systematic Mean and Sigma shifts

Our Bayesian estimation of the correlations 6 does not utilize cell
delay means. Hence, if there is a systematic shift on the cell delay
means, this shift would not impact the estimation. It can also be shown
that systematic shift in the delay standard deviations also do not impact
the estimate.

Based on the formulation in equation 3, let us assume that there is a
scale factor c being applied to all delay standard deviations, i.e. o, =
aoq, and oy, = aoy,;. We see that Cov'(ai,b;) = a?Cov(as, b;),

i.e. the covariance will be scaled by the factor . In addition, we
have (05,)? = Zi0®02, +25:5;0%pa;a; 0a;0a,;. Hence, (03, )% =

(aop,)?. Similarly, (0}, )? = (aop, )*. As aresult, we have
2
o[>, Zj Cov(ai, b;)]
a2(0p,0py)
Therefore, a systematic shift in the delay standard deviations by a
factor a would not change the theoretical correlation between the two
paths. As a result, the inference is not sensitive to this systematic

shift either. This immunity to systematic shifts makes this method
of estimating correlation much more robust than the naive method.

5. EXPERIMENTAL RESULTS
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Figure 8: Experimental flow

The experimental flow is summarized in Figure 8. The path-based
SSTA was discussed in Section 4.4 before. For the block-based SSTA,
we implemented the method in [6]. We used the placement tool from
[14] to obtain the x-y location of each gate. In the experiments, we
used [LCB,UCB] = [0, 1] as the prior. A “true” correlation model
6 was assumed in each case. Parameter values in © were used only in
the Monte Carlo simulator. p'is the Bayesian estimation of 6.

To show the results, we can (1) compare the parameters values in
between © and g, and (2) compare the 3¢ circuit timing bound from
the block-based SSTA based on p, to the “true” 3¢ timing bound from
the Monte Carlo simulation based on ©. We note that before the learn-
ing, we also have a 3o timing bound (the “prior” bound) calculated by
the block-based SSTA based on the upper correlation bound UCB.

In the results, when we say “timing bound,” we always refer to the
“u + 30 point from a delay distribution. For a parameter p € 6, our
learning method estimates the mean of p (1,) and the standard devia-
tion of p (0,). Hence, in the block-based SSTA, we have the choice of
using the correlation value p, (mean), the correlation value p, + o,
(1-sigma), or the correlation value p, + 30, (3-sigma). Hence, in the
results shown, when we show “mean,” “1-sigma,” or “3-sigma” in a
figure, we always refer to these correlation value(s) in use. Moreover,
when we use the “number of samples,” we refer to the number of sam-
ples in the Monte Carlo simulation producing the path delay results.

5.1 Global view Vs. Local view
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Figure 9: Global view Vs. local views
We conducted two types of experiments: (1) learning a global cor-
relation and (2) learning local correlations. Figure 9 illustrates the

difference. In the simple case as illustrated in Figure 9-(a), we con-
sider two blocks A and B separated by a long distance dist. Given
two paths P, (in A) and P, (in B), the assumption is that the distance
spanned by each path is much shorter than dist. Essentially we can
treat dist as the distance between any pair of delay elements a;, bj,
for a; € P,,b; € Py. Then, because delay correlations are distance
dependent, there is only one parameter p, to be learned between all
pairs of delay elements in between P, and P,. Local correlations in-
side A, B still affects individual path delays but they do not affect the
correlation between the two paths. Note from Section 3 (Figure 4)
that, local intra-path correlations dominate the worst-case timing of
max(Pq, Py) (by assuming that they are much larger than pas).

If we focus on P, itself, we cannot make the same assumption that
delay correlation between a pair a;, , a;, is the same as that between
another pair a;,,a;,. We need a higher-resolution model. In Fig-
ure 9-(b) and (c), we provide a grid view by discretizing a correlation
distance function. With this grid view, we assume that if two delay el-
ement is separated by a distance across w grids, then their correlation
is given by p.,. We also assume that p; > p2 > --- > py. Note that
inside a block, a path may pass through multiple grids.

We adopted the grid model in the experiments in order to maintain
the efficiency in the Monte Carlo simulation of circuit delay and the
block-based SSTA. As far as the learning method concerns, it could be
based on an arbitrary distance based model. This is because the learn-
ing utilizes only the simple path-based SSTA where handling complex
correlations is more efficient [5] than the block-based SSTA. For the
block-based SSTA [6], we could not afford to model correlations for
every pair of delay elements. A grid model could dramatically reduce
the number of correlation parameters to be considered.

One thing to note is that for block-based SSTA, a hierarchical grid
model [3] is preferred. Our grid model is a flat model. Hence, for
running the block-based SSTA, we need to convert our model into a
hierarchical model, which can be done by applying Cholesky Decom-
position or other more efficient methods (such as reverse PCA [15]).

5.2 Single parameter experiment - Figure 9-(a)

For the experiment, we assume an arbitrary correlation distance
function shown in Figure 10-(a). The number 50 (in abstractly de-
fined units) is also arbitrary. We selected a path P of 20 delay ele-
ments from circuit ¢2670. For simplicity we made two copies Py, P,
of this path and placed them separated by a distance of 50 which gave
a “true” correlation around 0.235 by setting dist=50 in Figure 10-(a).
In the Monte Carlo simulation, the correlation function was applied
to all pairs of delays in between the two paths as well as within each
path. However, the path-based SSTA is aware of only one unknown
correlation parameter pqp to be learned (in between the two paths).
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Figure 10: Assumed distance function and learned p,, distribution

Again, we assume pqy < UCB = 1 in the prior. Based on delays
from 1000 simulated samples, the result of estimating pqp is shown in
Figure 10-(b). Notice that the estimated result is a distribution which
in this case, is a Normal like distribution. We obtain j1,,, = 0.228 and
Op,, = 0.025. Figure 11-(a) shows the [Lo,, — Opuys Moas + Tpas)
intervals at different sample numbers. The “true” line is the correlation
value (0.235). We observe that the estimated interval for p,» becomes
smaller and closer to the truth as more samples are used.

Figure 11-(b) shows the timing bound comparison (in psec) based
on the 30 delay of max(P,, P,). As mentioned before, the “1sigma”
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Figure 11: Single correlation estimate results

curve is based on using the correlation value at p, , + 0p,,. The
“lsigma” curve represents a good upper bound to the true delay bound.
The difference between the “prior” and the “1sigma” (or “3sigma”) can
be viewed as the timing margin recovered by learning the correlation.
This margin is small because local correlations dominate the timing.

5.3 Experiments - Figures 9-(b) and (c)

In the 2nd experiment, we applied the model Figure 9-(b) on the cir-
cuit ¢2670. We selected two pairs of paths for learning. All the paths
span more than one grid. This gives two path correlations. We need at
least two path correlations because there are two unknown correlations
p1 and po to be learned. One path correlation can only give us enough
information to constrain a relationship between p; and p2. For exam-
ple, on a 2-dimensional p;-vs-p2 plot, learning from one path correla-
tion can only give us a curve (looks linear) as shown in Figure 12-(a).
‘We need at least two curves to find an intersection point.
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Figure 12: ¢2670 2-parameter estimation results
Figures 12-(b) and (c) show interval estimation results on p; and

p2, respectively. (d) shows the timing bound comparison. We note
that using the prior would give the timing bound at 2104.68 psec.
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Figure 13: c2670 3-parameter estimation results

Figure 13-(a) show results based on the 3-parameter model in Fig-
ure 9-(c). In this case, we selected three pairs of paths, each spanning
across at least three grids. We observe again that the “1sigma” is an
improved timing bound from the prior bound at 2104.68 psec.

Tables 1 and 2 summarize the results on four different circuits. We
observe that in all cases, the “Prior” which assumes correlation 1.0 on

all parameters are overly conservative. After learning, the “Posterior”
results show tighter timing bounds and recovered timing margins.

Circuit | Posterior (1-sigma) Prior True Margin recovered
c880 1310 14314 | 1293.8 9.38%
c1355 1340.5 1394.5 | 1338.03 4.04%
2670 1941.4 2104.7 | 19344 8.44%
Ind32 917 982.6 907.8 7.22%
Table 1: 2-parameter results (in psec), Margin=(Prior-Posterior) / True
Circuit | Posterior (1-sigma) Prior True Margin recovered
c880 1324.6 14314 1314.4 8.12%
c1355 1341.4 1394.5 | 1329.08 3.99%
c2670 1954.1 2104.7 19279 7.81%
Ind32 919.0 982.6 909.8 6.99%

Table 2: 3-parameter results (in psec), Margin=(Prior-Posterior) /True

In Figure 13-(b), we applied the 3-parameter model in the Monte
Carlo simulation but used a 2-parameter model in learning and block-
based SSTA. For comparison, we also include the “3-parameters, 1-
sigma” curve which was the result of still using the 3-parameter model
in learning and SSTA. We observe that, even if the actual correla-
tion model is a 3-parameter model and a 2-parameter model is used
in learning, we can still recover some margin. However, the amount
of the recovered margin would be less than that by using a higher-
resolution 3-parameter model. This result illustrates the trade-off be-
tween the correlation model complexity and the amount of recovered
margin. In any case, using a lower-resolution model in learning en-
sures a conservative bound on the worst-case circuit timing.

6. CONCLUSION AND FUTURE RESEARCH

In this work, we demonstrate the importance of accurate modeling
of spatial delay correlations in SSTA. We present a Bayesian learning
framework for learning these correlations from silicon. Our frame-
work utilizes path-based SSTA as the platform for learning. Learned
correlations can then be used in block-based SSTA to recover timing
margin. Our learning framework supports iterative learning where the
learned result (posterior) from a set of sample chips can be used as the
prior assumption (prior) for learning another set of chips. For future
work, we plan to investigate in detail this iterative learning as well as
the test related issues associated with the proposed methodology.
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