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ABSTRACT As discussed in [7], there are several issues in process variabil-
Statistical static timing analysis (SSTA) has been a popular research ity modeling and characterization, which may impede modeling for
topic in recent years. A fundamental issue with applying SSTA in a statistical static timer. Statistical process characterization demands
practice today is the lack of reliable and efficient statistical timing tremendous silicon and test resources and hence, is usually not done
models (STM). Among many types of parameters required to be care- frequently. Careful tracking of parameter variations over time can be
fully modeled in an STM, spatial delay correlations are recognized as overly expensive, which leads to gradual decrease in accuracy of a
having significant impact on SSTA results. In this work, we assume process variability model. Moreover, there are other sources of vari-
that exact modeling of spatial delay correlations is quite difficult, and ability such as environmental sources of variability and systematic
propose an experimental methodology to resolve this issue. The mod- layout-dependent variability which may be hard to characterize early
proposaccuracye uirmental m rethodoloyto olvhing iSSu.timpose up- in a design cycle. These issues, due to either economic reasons oreling accuracy requirement is relaxed by allowing SSTA to imoeu-methodology-related reasons, make worst-case modeling favorable, asper bounds and lower bounds on the delay correlations. These bounds
can then be refined through learning the actual delay correlations from modeling just the worst-case bounds reduces the inter-dependency be-
path delay testing on silicon. We utilize SSTA as the platform for tween process characterization and timing modeling.
learning and propose a Bayesian approach for leaming spatial delay Among the many types of parameters that need to be carefully con-
correlations. The effectiveness of the proposed methodology is illus- sidered to develop an STM, spatial correlations are recognized to have
trated through experiments on benchmark circuits. significant impact on design timing [8,9], and hence on SSTA analysis
Categories and Subject Descriptors: B.8.2 [Hardware]: Performance results [2,3]. Characterizing spatial correlations across device and in-
and reliability terconnect parameters (such as Leff , Vth, ILD) can be complex and

resource consuming [10]. Moreover, it is not entirely clear how to ef-
fectively model (or aggregate) spatial correlations based on parameters

Keywords:Statistical timing, Bayesian leaming, delay correlations of devices and interconnects [10] into the spatial correlations based on
delay elements at the cell level [2] [3] for efficient cell-based SSTA. In

1. MOTIVATION OF THEWORK addition, correlations may exist between different parameters, which
Statistical static timing analysis (SSTA) has attracted much atten- can further complicate the modeling issues [10].

tion in recent years (for example [1-6]). SSTA is attractive because Path delay testing
traditional worst-case corner timing analysis has become overly con- on Ist silicon .12 Tr
servative due to the magnitude of process variations at 90nm nodes and Assumed spatial Post-silicon g

Abelow. SSTA aims to recover the timing margin that is lost due to the delay correlation SSTA sian Learning LCB
unrealistic pessimism in traditional worst-case timing tools. Recover- bounds [LCB0, UCB0] distanc
ing this lost margin can give additional flexibility to design optimiza- Pre-silicon phase Adjusted boun (b) LCB,UCB
tion tools and facilitate design timing closure. !

Currently, if we were to take advantage of SSTA technology in prac- (a) SSTA leaming
tice, one immediate challenge would be obtaining a reliable and effi- Figure 1: Refined SSTA through Bayesian learning of correlations
cient statistical timing model (STM). The difficulties are twofold: (1) In this work, we assume that SSTA is cell based. We also assume
The statistical data required to develop a reliable STM may not be that obtaining an accurate model on spatial delay correlations at the
easily obtainable from a foundry. (2) Characterizing and representing cell level is difficult. To relax the accuracy requirement on correlation
statistical information in a statistical timing model can be much more modeling, we assume that SSTA is given an upper-bound model and
expensive compared to traditional worst-case comer methods. a lower-bound model of spatial delay correlations. For example, we

*This work was supported in part by National Science Foundation, may assume that the true spatial delay correlation is a smooth distance-
Grant Nor0312701 and Semiconductor Research Corporation, project based function [9]. Because we do not know the exact shape of the
2004-TJ- 173. function, we assume an upper-bound step function and a lower-bound

step function to bound it (as illustrated in Figure 1). The naive upper
bound model is to assume that all delay elements are 100% correlated.
Similarly, the extreme lower-bound model is that all delay elements

Permission to make digital or hard copies of all or part of this work for are fully independent. Our objective is to refine these bounds through
personal or classroom use is granted without fee provided that copies are leamning from the results of path delay testing on the silicon.
not made or distributed for profit or commercial advantage and that copies Figure 1 should be viewed as a timing margin recovery methodol-
bear this notice and the full citation on the first page. To copy otherwise, to ogy rahe thnamtoooyfrdsg iigcoueootk
rpublish, to post on servers or to redistribute to lists, requires prior specific adv antagero then rechovered margi ies no suggested, an ca keu
permnissionand/or a fee.adatgoftercvrdmriiSntsgse,adcnbeu
DAC 2006, July 24-28, 2006, San Francisco, California, USA. to the user. In this work, we focus the discussion on developing the
Copyright 2006 ACM 1-59593-381-6/06/0007 ..$5.00.
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methodology. We note that the learned spatial delay correlations are The analysis based on this simple path view gives the intuition on
aggregate results from both design-related and process-related sources. why delay correlations are important. Without knowing the actual cor-
Hence, the learned correlations are based on cell delay elements rather relations between delay elements, we can only bound the actual path
than on individual device or interconnect parameters. standard deviation a to be between aind and affuii. Figure 2 presents
Our learning approach is Bayesian based so that the estimation of the Monte Carlo simulation results of the worst-case delay points on

correlations can take a prior into account. In the proposed method- 1000 samples (occurrences) on the benchmark c2670 based on a 90nm
ology, the prior is the initial spatial delay correlation bounds [LCBo, statistical cell-based timing library characterized in the past [12]. In
UCBo]. After learning, we calculate a posterior that provides adjusted the fully-correlated case, we assume all delay random variables are
bounds [LCBa, UCB.]. It is important to implement a Bayesian 100% correlated. If we assume that delays are neither totally inde-
based learning so that posterior bounds can be the prior for learning in pendent nor fully correlated, we would expect the worst-case delay
the next run. In contrast, traditional maximum likelihood based statis- distribution to be somewhere between these two extremes.
tical inference does not support this prior-posterior iteration [11].

Given that the correlations are constrained within [LCBa,UCBa], 3. BOUND ON WORST-CASE TIMING
what correlation values 0 E [LCBa, UCBa] cause the worst-case In this paper, when we refer to worst-case timing, we are referring
timing in SSTA? This issue is crucial as we do not want SSTA to re- to a simple notion of the 3-a value of the circuit delay distribution of
port optimistic results. Hence, we need to make sure that SSTA with a combinational circuit. Thus the only operations we are concerned
o = LCBa and SSTA with 6 = UCBa also represent the lower and with are addition and max. It's quite clear that the worst case value of
upper bounds on the worst-case timing. Otherwise, we need to imple- a sum of random variables increases monotonically with a monotonic
ment a search method to find such a worst-case 0. increase in the correlations between the variables. That is given n
The rest of the paper is organized as the following. Section 2 re- delay random variables di . dn, their correlations can be specified

views the background of SSTA and illustrates the impact of spatial with a symmetric positive semi-definite n x n correlation matrix p =
correlations on SSTA results. Section 3 studies this impact in detail [pij]. Suppose we have bounds on this matrix U and L. Let U = [U j]
and suggests the use of UCBa in SSTA for obtaining the worst case be another symmetric positive semi-definite matrix such that Uij>
Section 4 presents our Bayesian learning method. Section 5 summa- Pij for all i, j. Similarly, let L = [Lij] be the matrix such that Lij <
rizes the experimental results. Section 6 concludes the paper. pij for all i, j. Let A = E1 di. From the previous analysis, we have

seen that PA + 3arL < PA + 3ap < HA + 3au where UL, ap and
2. BACKGROUND au are the standard deviations of A calculated using the respective

correlation matrices.
SSTA can be categorized intopath-based SSTA [5] and block-based Hence, given [L, U] bounds on the correlations, we see that [/bA +

SSTA [1,6], where various techniques to perform + and max of corre- 3aL, /-LA +3au] are also the bounds on the worst-case timing hIA +3ap
lated random variables based on Gaussian and non-Gaussian assump- This is a result for a single path. However, in a real circuit, the circuit
tions have been proposed. How to model and handle spatial corre- delay distribution can be thought of as the result of applying a sequence
lations in SSTA is also an important research topic. Various spatial of + operations for the delays along each path and finally a single max
correlation models have been introduced [2,3]. operation. Thus, increasing correlation will have an effect on both the
Our work was inspired by the work in [4] where several interesting + operations and the max operation.

observations were made regarding the practical use of statistical timing
methods. Suppose we are given with a n-stage path. Suppose that the a
delay of each stage i can be characterized as a Normal distribution [ [E} -{ {

di-N(i,a?) for 1 < i < n. The path delay Pd is simply the
summation of these n Normal distributions: Pd N(p, a2) pc
where jt = EZ7= pi anda = j/iz=la? + 2 1Ei i+i(pi(aiaj) Figure 3: A simple example of mixing + and max

pij = 1 for i = j and Pij for i 0 j denotes the correlation between Figure 3 shows a simple example by assuming an intra-path corre-
the delay di and delay dj. If pij = 0 for all i $ j, i.e. delays are lation coefficient pa and an inter-path correlation coefficient pc. By
mutually independent, then we see that a = aind = Z ~.2 If assuming that each delay element is Normal N(100, 102), we plot the

1for all i, j, i.e. delays are fully correlated, then we se t 3-a worst case delay (max of the two paths) calculated from Clark'spia= for all iji.e.delays are fullycorrel(ated,thenwe seethat formula by varying pa and pc.ar = a'ful = ny1a2 + 2E71 UE1(a n- DU4a.
If pij = aij for all i 0 j where 0 < aij < 1, we have

a=aa = 2/Y2iai2+ 2F_i,LE.i+±i(aijaiaj) 200 0Similarly, we can define aOb by letting pij bij. PC
For simplicity, we assume 0 < aij < bij < 1 for all i 54 j. Then we Pa C;P Pa0025p

see that aCid < a` < ab < afull. Because correlations do not impact (a) n=l (b) n=2 (c) n=6
the resulting mean /-t, we can also say that i + 3a0i,d < 1u + 3aa < Figure 4: Pa dominates the 3aJ worst case delay calculation
iu + 3ab <I + 3af,,i. In other words, the 3a worst-case delay of the
path increases monotonically as the correlations increase. The upper In Figure 4-(a), the plot is with n = 1 (path length = 1), and hence
bound is when Pij = 1 and the lower bound is when pij = 0. pa does not apply. We note that in this plot, we see a non-monotonic

effect on the worst case timing from increasing pc. With n = 2 as

80 shown in plot (b), we see that non-monotonicity nearly gone as theIndependent worst case delay is dominated by the value of pa. Plot (c) shows a
860 - 4 similar case with n = 6. The monotonic dependency of the worst-

t' 40- Fully Correlated case delay on the value of Pa can clearly be observed.
Note that in this simple example, Pa impacts the + operations on

individual path delays and pc impacts the max of the two delays. If

1000 12001400 1600 1800 2000 2200 we assume Pa E [la, ua] and Pc e [la, us], we see that the worst-case
Delay(ps) delay primarily depends on pa = ua and depends much less on pc.

Figure 2: c2670 timing distribution (x-axis is in psec)
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The dependency on pc diminishes when the path length n increases. 4. LEARNING THE CORRELATIONS
We can continue examining this on full circuits.

25 Hypothesis
a, ~~~~~~~ ~ ~~ ~~~~~~~~~~~~~~~~~slpaceHSsem,

a 20 . .Parameters | | Data

Figure 7: Bayesian inference: Pr(0|3, g)
c 15

Bayesian parameter estimation is a framework for estimating un-
rv10 1§known system parameters W given obser-ved data vector D) and an as-

2 c880 + sumed hypothesis space 1t. Figure 7 illustrates the concept.
ID S c2670

C6288 X Pr (D I X, )Pr(6I1X) likelihood x prior
0 .2 0.4 .6 0. Pr(Ol,) Pr(D|X) i.e.posterior evidence (1)
0 0.2 0.4 0.6 0.8 1

Global correlation coefficient Equation I re-states the Bayes rule [11]. The evidence can be ex-
Figure5: Impact of increasing global correlationp pressed as Pr(bl1) = JdPr(BlW,) Pr(WI'H) dO, which is the

Figure 5 shows Monte Carlo simulation results on three benchmarks normalizing constant to make the posterior a valid probability density.
and one industrial custom design, Ind32. In this experiment, we as- In learning spatial delay correlations, we assume that the parameter
sume a global correlation coefficient p applicable to all pairs of delay space consists of k correlation coefficients 0 = [pl, * * *, Pk]. As an
random variables. We plot the percentage of change on the "ji + 3a" example, one can model the spatial correlations by a distance-based
worst-case point from the circuit delay distribution given by each p function such as that illustrated in Figure I before. Then, each pi can
value. We clearly see that this delay point increases as p increases. be the value at a step in the distance-based step function, i.e. if the dis-

In theory, we know that the "j + 3cr" worst-case delay based on tance between two delay elements is between a given range [ci, ci+,],
SSTA-computed circuit delay distribution using the upper correlation then their correlation is estimated as pi. In the extreme case, if we are
bound UCB, may not be the true worst case. However, the analysis given n delay variables, we can assume k = nC2, i.e. each pair of
shown in this section suggests that in practice, applying SSTA with variables has a unique correlation between them.
the UCB gives a good approximation on the worst-case circuit delay. For each pi, we assume that pi falls into a range [ii, ui]. We let
This assumption simplifies the methodology in Figure 1. Otherwise, UCB = [Ul,... Ukj and LCB = [11,... ,Ik]. Hence, the hypoth-
the methodology needs to include a delay maximization method to esis space 'H is the vector space bounded by UCB and LCB. In
search for the worst-case timing in [LCB, UCB]. between UCB and LCB, because initially we do not have knowledge
3.1 Correlations vs. other modeling errors on 0, we can assume a uniform distribution in the space, i.e. for each

In a cell-based STM, there are other ways for the model to be inac- pi, Pr(pi E [x, y]) IY- - for 1i < x <y u. We note
curate. How does the impact of spatial correlations compare to those that the learning framework allows any distribution to be specified in
from other sources of modeling errors? We experimentally consider the prior, as long as it is efficiently computable.
other sources of modeling errors: (1) Random errors: A random zero- 4.1 Naive method for correlation learning
mean Gaussian noise is added to each pin-to-pin delay in the model The naive method for learning correlations via path delay testing is
with the standard deviation equal to 10% of the delay. (2) Sigma shift: to measure the delay of a path, apply the measured value to a theoret-
The standard deviation of each pin-to-pin delay is increased by 10%. ical path delay formula and solve for the correlations. This method is
(3) Mean shift: The mean of each pin-to-pin delay is increased by 10%. extremely unrobust since there are many other factors that affect the
(4) Correlation 0.5: A global correlation coefficient 0.5 is applied to path delay. For example, there may be a systematic error in the char-
every pair of delay variables. (5) Correlation 1: A global correlation acterization of the individual delay elements that is manifest as a shift
1.0 is applied. In addition, we use the case where all delay variables in the mean or standard deviation. It is therefore very risky to use
are independent, i.e. correlation = 0 as the basis for companson. correlation to explain the absolute delay observed.

60 OCor S Cor. .s Cor. 4.2 Overview of our approach
40 40 . jError4ean Full Instead of basing our leaming on absolute path delays, we utilize

I].l . ItARandomError path delay correlations as the measured data. This makes the learned
Ou 20 - 4 S 8 li Wio 0 results less sensitive to other modeling errors such as systematic shift

j;1V ty 19t _iI~jIt \ gl rt in the mean or sigma discussed in Section 3.1 before. This point will
9eo 770 780 790 800 7! 800 850 900 950 be illustrated later in Section 4.7.

Delay(ps) Delay (ps) In our method, we measure the delay correlation between paths and
(a) (b) derive the theoretical correlation between paths as a function of the

Figure 6: Ind32 critical path delay histograms individual delay element correlations. If we were only interested in
We select the 1000 most critical paths based on the base case by obtaining point estimates of the individual delay element correlations,

running block-based SSTA [6] on Ind32. For each path, we focus on we could directly solve for the individual delay element correlations.
its "p + 3oc" delay point. Figure 6-(a) shows the path delay histogram However, we're interested in using the Bayesian framework to obtain
on the base case ("0 Cor."). In addition, we also show the results of the confidence of the point estimate. Thus, we derive the likelihood
applying the error assumptions (1) and (2) above. We observe that ran- function for an observed path correlation and provide a method for
dom Gaussian noise and systematic shift of standard deviation do not determining the mean and standard deviation from the posterior prob-
alter the path delay results much. In contrast, plot (b) shows the results ability density of the individual correlations.
of applying the assumptions of (3), (4), and (5). We can clearly see 4.3 Measuring path delay correlations
the impact of delay correlations on these path delays. The simple ex-
perimental analysis demonstrates the importance of correct modeling Given two paths Pa, Pb, suppose that we can measure their path
of spatial delay correlations and therefore, motivates us to develop a delays on t silicon samples to obtain the measurements Ma = [xi,
method to learn the actual correlations from silicon. ..., xt] and Mb = [yl, ..., yt, respectively. We assume that this

can be achieved by varying testing frequency in path delay testing.
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There are several test related issues to be resolved in order to ensure However, 0 is kept symbolically because it is the unknown vector of
accurate measurement of these path delays. These issues include, how parameters to be estimated. Once the value rab (and hence Zab) iS
to generate a test pattern to sensitize a path but not other paths, how to determined, equation 5 expresses Pr(rab J) as a function of 0 only,
apply the test pattern in a scan mode properly, etc. We do not go into i.e. denoted as hrab (0) as mentioned above. Hence, we have
these issues because they are out of the scope of this paper. However,
we note that the selection of Pa, Pb can be flexible in our methodology. Pr(OfIrab, NH) oc Pr(rab 0) * Pr(OJR) = hr b (0) * prior (6)

Given Ma, Mb, we calculate the Pearson's correlation coefficient:

rab =- i(xiyi) - (Eixi)(YZyi)/t (2) 4.5 From rab to R ...
- i(x)2/t+2(y) -(iSy )2/t In the above analysis, we establish a likelihood function given a sin-

We call rab a measured path correlation. For learning, our data gle sampled delay correlation between a pair of paths. To extend this
space D consists of several measured path correlations. likelihood function for s pairs of paths, ideally, we would replace the
44 Baesian inference of Obased onr scalar correlation rab with a vector of correlations R ..r.. r,rSBayesian inference of ~ based Ofl 1~ab and directly obtain a joint likelihood function over the s observations.

Given rab, we would like to express the likelihood as a function of However, to our best knowledge, there is no closed form for such a
0. Let Pa consist of n delay elements {a, ... , an } and let Pb consist function with multiple Pearson correlations. Our solution is to use a
of m delay elements {bi,.. bm }. By assuming Gaussianality on all Naive Bayesian approach [11]. This approach assumes that the differ-
random variables, we have ent observations riare conditionally independent. Although this may

Cab a Corr(Pa,Pb) ZU >72 Cov(aC, b3)P(3) be flawed, it is an assumption that is often used to simplify Bayesian
0Pa UPb approaches.

where Cov(ai, bj) -P[aibj]aibi and -A
02 = Ein 1 2i + 2 [a1 Ena]ala Pr(RIO) = Pr(rj10) * Pr(r210) ... * Pr(r, I0) = hq (0) (7)
o2 2* 2E *Ea2Pb = ±=ii+2b =1 Z-i+l P[bibj] biUcb3 In other words, the multivariate likelihood function is the product

We note that P[aibj], P[aiaj], and P[bibj] can be determined from the of the individual likelihoods. Multiplying the multivariate likelihood
parameters in 0 and the distances between al and bj, between ai and with the prior, we have
aj, and between bi and bj, respectively. vat and Cbi can be determined Pr(OfR, N) o Pr(RJO) * Pr(OJ) (8)
from the given statistical timing model. Let d- [ a,X an]I and

b = [Cb1 .b., m, Then, we see that equation 3 says that Cab is a To normalize Pr(R1 O) * Pr(OJR) for obtaining the probability den-
function of 0, -, and (J: sity function for Pr(OIR, NH), we need to calculate fJ (Pr(RIO) *

Cab = Corr(Pa, Pb) = f (O , ci) (4) Pr(0lN)) dO which can be quite complicated. Because our objective
.. ~~~isto learn the statistics such as the mean and standard deviation of theGiven Cab, we ask the question: what is the probability of observing estimate sin to get ac en intand0ri isnotne e

'rab,~~~~~~i.whti.rrbCb?Bcue n a edtrie
estimated in order to get a confidence interval on 0, it iS not necessaryrab, i.e what iS Pr(rabfCab)? Because Ca andO can be determied.a to explicitly express the probability density Pr(OIR, N).from the timing model, the only unknown is 0. Hence, we can re-

phrase the question as: what is the probability Pr(rab1)? 4.6 Rejection sampling
Suppose we can express Pr(rabIO) = g(rab, 0). We see that given To get the mean and standard deviation of the posterior Pr(0IR, N),

a set of values on the parameters in 0, we can calculate the probability we utilize rejection sampling method [ 1]. Although there are more in-
of rab. It is more interesting to see that if we are given a value of rab, volved methods such as Metropolis-Hastings sampling, rejection sam-
g becomes a function hrab (0) that entirely depends on 0 only. Multi- pling is sufficient for our purposes. In rejection sampling, we first draw

plyingh.ab(0)with theprior Pr(.~).a random sample pj from the parameter space 0 according to the priorplying hrab (0) with the prior Pr(01'H) and normalizing the result, we -

..to i rldandn l th rsl w Pr(0jN). Recall that we can assume a prior where in , 0 has a multi-
Rcanlobtai thateqpsteior2probability dstributionofthetruepotionPb . variate uniform distribution in [LCB, UCB] to begin with. Then, we
Recall that equation 2 is an estimation of the tine pathcorrelationneed to decide if the random sample - should be accepted or rejectedCab based on the observed samples. Hence, rab in essence is also a a (

random variable characterizing the sampling distribution of the cor- according to the likelihood hq(0) in equation 7 abov
relation coefficient. This sampling distribution is actually a skewed To implement the rejection sampling, we need to find the maximumnelation-normalcit..if exprs 2 point max = max{hN(p IeIV -

[LCB, UCB]}. This can be doneePr(rab I) directly with rab, g(rab, 0) through numerical maximization using a standard mathematical soft-becomes complex and hard to manage. Thus, it is convenient to take
e'. . . ~~ware package. Then, we let h-=ha/max so we know that V17the Fisher Transformation of rab [13] and obtain a new statistic Zab SO R 50

that the result is mathematically more manageable. After the transfor- hR( < 1. Therejection sampling is shownbelow
mation, Zab can be expressed as a Normal distribution whose mean is
the transformation of the theoretical correlation Cab [13]. Hence, we Randomly draw a sample p according to the prior.
have (the resulting equation 5 is a Normal distribution): Randomly draw a sample u from distribution U(O, 1).have(theCl.b-tAnh-rab = 2 ln( l ), (Fisher Transform [13]) If u < hR(pR accept p as a sample. Otherwise, reject p.

1 -rab( Repeat process until there are sufficient samples or conver-Let klzab = tanh- Cab and let cJZab- /73 gence criteria is met.

e- (Zab -zab)2 A _ -

Pr(rabO) 2g(rab20)N(Zb, a ) e 2-(t-3) (5 After we obtain sufficient samples, we can then calculate the sam-Zab 2r t-t3 ple mean
3 and sample standard deviation api for for each of the

In the actual application of equation 5, rab iS a value calculated parameters, pi. This allows Us to estimate a confidence interval Such
using equation 2 based on the measured path delays on the t sample as [a8P&-(7a&, j/h'P ± aPi] for each correlation parameter Pi.0 ~~~~~~~~~~~~~~Itis interesting to note that we can store the un-normalized posterior

chps Cabfthetw a,h Pa) is calculted bhase onatsimplpath-basedST (Equation 8) and reuse it as the prior for the next run of learning fo_ST on th tw ah a b ent hti hspt-ae SA example, based on a new set of sample chips. Hence, for the new iunnCan (Jb are calculated as vectors of values based on the timing model. we col relc N'ihEuto hndaigtesml5
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4.7 Systematic Mean and Sigma shifts difference. In the simple case as illustrated in Figure 9-(a), we con-
Our Bayesian estimation of the correlations 9 does not utilize cell sider two blocks A and B separated by a long distance dist. Given

delay means. Hence, if there is a systematic shift on the cell delay two paths Pa (in A) and Pb (in B), the assumption is that the distance
means, this shift would not impact the estimation. It can also be shown spanned by each path is much shorter than dist. Essentially we can
that systematic shift in the delay standard deviations also do not impact treat dist as the distance between any pair of delay elements ai, bj,
the estimate. for ai E Pa, bj e Pb. Then, because delay correlations are distance

Based on the formulation in equation 3, let us assume that there is a dependent, there is only one parameter Pab to be learned between all
scale factor a being applied to all delay standard deviations, i.e. a' = pairs of delay elements in between Pa and Pb. Local correlations in-
aaoi and or,. = aabj. We see that Cov'(ai, bj) = a2Cov(ai, bj), side A, B still affects individual path delays but they do not affect theb. 0 2 correlation between the two paths. Note from Section 3 (Figure 4)
i.e. the covariance will be scaled by the factor a2. In addition, we that, locai intra-path correlations dominate the worst-case timing of
have (ap )2 = yi 2a2 +2iZEjCa Paiaj ai aaj. Hence, (op)P max(Pa, Pb) (by assuming that they are much larger than Pab).
(ao,pj)2. Similarly, (06b )2 = (oeaPb )2. As a result, we have If we focus on Pa itself, we cannot make the same assumption that

eo2[Ei Zj Cov (ai,ba)] delay correlation between a pair ail, ai2 is the same as that between
Cab = 2> A = Cab (9) another pair ail, ai3. We need a higher-resolution model. In Fig-(Pac-Papb) ure 9-(b) and (c), we provide a grid view by discretizing a correlation

Therefore, a systematic shift in the delay standard deviations by a distance function. With this grid view, we assume that if two delay el-
factor ae would not change the theoretical correlation between the two ement is separated by a distance across w grids, then their correlation
paths. As a result, the inference is not sensitive to this systematic is given by pw. We also assume that pi > p2 > ... > pw. Note that
shift either. This immunity to systematic shifts makes this method inside a block, a path may pass through multiple grids.
of estimating correlation much more robust than the naive method. We adopted the grid model in the experiments in order to maintain

the efficiency in the Monte Carlo simulation of circuit delay and the
5. EXPERIMENTAL RESULTS block-based SSTA. As far as the learning method concerns, it could be

iMonte Carlo based on an arbitrary distance based model. This is because the learn-
simulation IAssumerJtrucomreing utilizes only the simple path-based SSTA where handling complexl l compare compare correlations is more efficient [5] than the block-based SSTA. For the
Ottsetvd ai Byesiamingc osterriors p ;.;5g>block-based SSTA [6], we could not afford to model correlations for

every pair of delay elements. A grid model could dramatically reduce
:Pattt-basadSTh AneumedS prior 0 E [LCB, UCB] the number of correlation parameters to be considered.

Figure 8: Experimental flow One thing to note is that for block-based SSTA, a hierarchical grid
model [3] is preferred. Our grid model is a flat model. Hence, for

The experimental flow is summarized in Figure 8. The path-based running the block-based SSTA, we need to convert our model into a
SSTA was discussed in Section 4.4 before. For the block-based SSTA, hierarchical model, which can be done by applying Cholesky Decom-
we implemented the method in [6]. We used the placement tool from position or other more efficient methods (such as reverse PCA [15]).
[14] to obtain the x-y location of each gate. In the experiments, we
used [LCB, UCB] = [6, 1] as the prior. A "true" correlation model 5.2 Single parameter experiment - Figure 9-(a)
e was assumed in each case. Parameter values in / were used only in For the experiment, we assume an arbitrary correlation distance
the Monte Carlo simulator. p is the Bayesian estimation of 6. function shown in Figure 10-(a). The number 50 (in abstractly de-

To show the results, we can (1) compare the parameters values in fined units) is also arbitrary. We selected a path P of 20 delay ele-
between (5 and p, and (2) compare the 3ar circuit timing bound from ments from circuit c2670. For simplicity we made two copies Pa, Pb
the block-based SSTA based on p, to the "true" 3oa timing bound from of this path and placed them separated by a distance of 50 which gave
the Monte Carlo simulation based on e5. We note that before the learn- a "true" correlation around 0.235 by setting dist=50 in Figure 10-(a).
ing, we also have a 3a timing bound (the "prior" bound) calculated by In the Monte Carlo simulation, the correlation function was applied
the block-based SSTA based on the upper correlation bound UCB. to all pairs of delays in between the two paths as well as within each

In the results, when we say "timing bound," we always refer to the path. However, the path-based SSTA is aware of only one unknown
'4c + 3cr" point from a delay distribution. For a parameter p E 9, our correlation parameter Pab to be learned (in between the two paths).
learning method estimates the mean of p (pa) and the standard devia- '
tion of p (a,). Hence, in the block-based SSTA, we have the choice of c10
using the correlation value tip (mean), the correlation value tp + ap _ os
(1-sigma), or the correlation value lI,p + 3op (3-sigma). Hence, in the 0 aa /
results shown, when we show "mean," "l-sigma," or "3-sigma" in a 0 5s

0.15r 0.2 0.25 0.3 0.35
figure, we always refer to these correlation value(s) in use. Moreover, Distance Correlation Coefficient
when we use the "number of samples," we refer to the number of sam- (a) 1 + Tanh(-dist/50) (b) Learned Pab
ples in the Monte Carlo simulation producing the path delay results. Figure 10: Assumed distance function and learned Pab distribution
5.1 Global view Vs. Local view Again, we assume Pab < UCB = 1 in the prior. Based on delays

A X _ _ P2' j ' (d) DisL. func. view from 1000 simulated samples, the result of estimating Pab is shown in
[tPabJ jJ _ _ _ FP'PTT1Figure 10-(b). Notice that the estimated result is a distribution which

' __ -- ----- A2 in this case, is a Normal like distribution. We obtain liPpb = 0.228 anddist , P2 _ _ _ _~~~~------t= P3p ab= 0.025. Figure 11-(a) shows the [/bpabaas Pb+ Pb

_P3 _ - - a intervals at different sample numbers. The "true" line is the correlation
(a) I-par. global view (b) 2-par. local view (c) 3-par. local view ..> global view value (0.235). We observe that the estimated interval for Pab becomes

Figure 9: Global view Vs. local views smaller and closer to the truth as more samples are used.
We conducted two types of experiments: (1) learning a global cor- Figure 1 l-(b) shows the timing bound comparison (in psec) based

relation and (2) learning local correlations. Figure 9 illustrates the on the 3a delay of max(PF, Pb). As mentioned before, the "Isigma"
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0.4- I I
CZ 1764 ro~ 0.35TInterval estimate -- - - ...~P'Q - - al parameters are overly conservative. After learning, the "Posterior"

IT- 162menresults show tighter timing bounds and recovered timing margins.0. *3s' ma ean_
r-0.25 ~4 1760 4 true -Circuit TPosterior (1-sigma) -Prior -True Margin recovered

sZ 0.-l-~178 iim c880 T 1310 -1431.4 1293.8 9.38%
05 mean true -_H -- c1355 1340.5 -1394.5 1338.03 4.04%

1

U 0.1-____________111 c270 191. 2104.7 11934.4 8A44%.0 200 400 6oo soo 100 100 200 300 4M5006000700 800 901000 1nd32 917 -982.6 907.8 7.22%
# of samples # of samples uesed in learning Table 1: 2-parameter results (in psec), Margin=(Prior-Posterior)/True

(a) Interval estimate (b) Timing bounds -Circuit Posterior (1-sigma) -Prior -True Margin recovered
Figure 11: Single correlation estimate results c880 1324.6 1431.4 -1314.4 8.12%

c1355 jj 1341.4 -1394.5 -1329.08 3.99%
curve is based on using the correlation value at I1Pab + O'APb The c2670 T 1954.1 2104.7 -1927.9 7.81%
"1I sigma" curve represents a good upper bound to the true delay bound. 1nd32 919.0 -982.6 909.8 6.99%
The difference between the "prior" and the "1I sigma" (or "3sigma") can Table 2: 3-parameter results (in psec), Margin=(Prior-Posterior)/True
be viewed as the timing margin recovered by learning the correlation. In Figure l3-(b), we applied the 3-parameter model in the Monte
This margin is small because local correlations dominate the timing. Carlo simulation but used a 2-parameter model in learning and block-

5.3 Experimens - Figures -(b) and (c)based SSTA. For comparison, we also include the "3-parameters, 1-
5.3 Experiments - Fgures 9-(b) and (c)sigma" curve which was the result of still using the 3-parameter model

In the 2nd experiment, we applied the model Figure 9-(b) on the cir- in learning and SSTA. We observe that, even if the actual correla-
cuit c2670. We selected two pairs of paths for learning. All the paths tion model is a 3-parameter model and a 2-parameter model is used
span more than one grid. This gives two path correlations. We need at in learning, we can still recover some margin. However, the amount
least two path correlations because there are two unknown correlations of the recovered margin would be less than that by using a higher-
p, and 92 to be learned. One path correlation can only give us enough resolution 3-parameter model. This result illustrates the trade-off be-
informuation to constrain a relationship between pi and P2. For exam- tween the correlation model complexity and the amount of recovered
ple, on a 2-dimensional Pl -VS-P2 plot, learning from one path correla- margin. In any case, using a lower-resolution model in learning en-
tion can only give us a curve (looks linear) as shown in Figure 12-(a). sures a conservative bound on the worst-case circuit timing.
We need at least two curves to find an intersection point. 6. CONCLUSION AND FUTURE RESEARCH

a2 0.85-
0.8 - interval Estimate'-.-- In this work, we demonstrate the importance of accurate modeling

'"-ne path pair 0.75 - - of spatial delay correlations in SSTA. We present a Bayesian learning
0.6_ 0.75 - T framework for learning these correlations from silicon. Our frame-

Another a work utilizes path-based SSTA as the platform for learning. Learnedpath pair ~~~~0.55 - correlations can then be used in block-based SSTA to recover timing
0.2 12 ~~~~~~~0.5-0.2 0.4- __________________ margin. Our learning framework supports iterative learning where the

0 0.2 0.4 0.6 0 208 400 600 800 1000 learned result (posterior) from a set of sample chips can be used as the
()dcd P2,l b Leme Saplesitrgi prior assumption (prior) for learning another set of chips. For future
(a)decide(p2, po) (b) Lere 91 - inta-ri work, we plan to investigate in detail this iterative learning as well as
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