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Abstract—Critical path selection is an indispensable step for
testing of small-size delay defects. Historically, this step relies on
the construction of a set of worst-case paths, where the timing
lengths of the paths are calculated based upon discrete-valued
timing models. The assumption of discrete-valued timing models
may become invalid for modeling delay effects in the deep sub-
micron domain, where the effects of timing defects and process
variations are often statistical in nature. This paper studies the
problem of critical path selection for testing small-size delay
defects, assuming that circuit delays are statistical. We provide
theoretical analysis to demonstrate that the new path-selection
problem consists of two computationally intractable subproblems.
Then, we discuss practical heuristics and their performance with
respect to each subproblem. Using a statistical defect injection and
timing-simulation framework, we present experimental results to
support our theoretical analysis.

Index Terms—Path selection, process variations, statistical
timing, testing.

I. INTRODUCTION

PROCESS variations, manufacturing defects, and noise are
major sources affecting the timing characteristics of deep

submicron (DSM) designs [1]. Process variations may result in
a wide range of possible device parameters, causing variations
in timing. Delay faults, due to interconnect defects and noise
sources, can be hard to predict in terms of their actual delay sizes
[2]. For these DSM timing effects, the traditional assumption
of discrete-valued timing models may become invalid [3], [4].
These DSM timing effects can better be captured and simulated
using statistical models and methods [5].

In today’s industry, the single transition fault model remains
one of the most affordable and effective models for at-speed
testing. The transition fault model contains no timing informa-
tion. Hence, it is often thought that transition fault tests are good
for capturing large-size defects. For capturing small-size de-
fects, it is a common practice to test a set of critical paths. Crit-
ical paths are defined by their timing lengths. Traditionally, the
timing length of a path is calculated based on a discrete-valued
model. As the timing model changes from a discrete-valued
model to a statistical model, we need to restudy the problem
of critical-path selection.
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The primary goal of this paper is to understand how the new
path-selection problem is different from those formulated based
on discrete-valued timing models. We formulate the new path-
selection problem as an optimization problem consisting of two
objectives. The first objective is to maximize the topological
coverage of selected paths. The second objective is to maximize
the return of testing a path by considering all paths that have
been tested before the path. The second objective is formulated
using the concept of path correlation. Considering path corre-
lation in path selection makes our problem different from those
studied before [6], [7].

To understand the complexity associated with the two objec-
tives, we provide theoretical analysis to show that optimizing
each objective is computationally intractable. We then analyze
several heuristics for optimizing each objective individually. For
optimizing both objectives together, we derive three heuristics
and suggest that one heuristic (called H-Opt) should be better
than the other two (called H-Timing and H-Segment).

To validate our theoretical results, we developed a statistical
timing simulation framework capable of performing random de-
fect injection and simulation. We introduce a quality evaluation
scheme based upon the framework and present consistent exper-
imental results to support our theoretical analysis.

This paper is organized into three parts. In Section II, we give
a brief introduction of prior work. Section III introduces the
path-selection problem based on a statistical timing model. We
discuss the concepts of path correlation and path independence
and their roles to our path-selection problem.

The second part consists of Sections IV–VIII. This part
analyzes the complexity of the new path-selection problem.
The goal of Section IV is to define the path-selection problem.
In Section V, we show that for optimizing path selection with
the statistical model, it is required to simultaneously optimize
two independent objectives (call them and ). In
Section VI, the problem of optimizing the first objective
is analyzed in detail. Then, in Section VII, we analyze the
second objective . In Section VIII, we combine results
from Sections VII and VIII to estimate the performance of
three path-selection heuristics.

Experimental methods are explained in Section IX. This
section also includes experimental results to compare the three
heuristics. The last section concludes the paper and suggests
future research directions.

II. PRIOR WORK

Historically, the definition of a critical path is based upon
nominal or worst-case timing analysis [6]–[11]. In traditional
critical-path analysis, delays are often bounded by ranges. In the
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industry, timing analysis relies on cell characterization, where
the earliest, latest, and average signal arrival times are estimated
for the pin-to-pin delay of each cell [8]. With these discrete
timing values, the delay of a path can be defined as the accumu-
lated delay on the path. The set of critical paths can then be con-
structed by selecting either a fixed number of the longest paths,
or all paths that fall into a predefined time range. If circuit-seg-
ment coverage is considered, then the set of critical paths can
include, for each signal segment, the longest timing path that
covers the segment [6], [7].

When critical paths are calculated based upon a fixed
threshold, the number of selected paths can be very large [6],
[12]. In practice, this is not feasible due to the limitation on test
length and the possible high cost associated with path delay
fault ATPG and fault simulation. Usually, a pattern generated
from a given path can fortuitously sensitize only a few or no
other paths. Hence, the size of a pattern set based on a path set
can be close to the size of the path set.

The authors in [13] proposed a test generation method where
estimated path delays were calculated repeatedly based on
process parameters after each path was selected. By doing so,
they demonstrated that it was possible to dramatically reduce
the number of selected paths for a given threshold value.
The authors in [9] generalized the path selection concept in
[13]. They proposed a delay model that could capture intradie
(within-the-chip) variations as well as interdie (chip-to-chip)
variations. Based upon their variation model, the authors pre-
sented a path selection algorithm to reduce the sizes of path
sets without sacrificing their test quality.

The path selection methods described above are all based
upon discrete-valued timing models. While the goal in [9] and
[13] was to reduce the number of selected paths by taking
process variations into account, our goal is to further optimize
the critical path set by using a statistical model that can better
capture the entire spectrum of the variations.

III. CONSIDERATIONS IN PATH SELECTION

Consider the example shown in Fig. 1. Suppose cell charac-
terization gives the mean and standard deviation of the delay
random variable for each pin-to-pin delay. For example, the
pin-to-pin delay is a random variable with mean 15 and
standard deviation 1. By assuming bound, the minimal and
maximal delays are and , respectively. Hence,
in a discrete delay model, the pin-to-pin delay can be denoted
as which represents the earliest, the average, and the
latest signal arrival delays.

Based on the worst-case scenario using the bounds, path
P4 is most critical because the worst-case delay is

. The worst-case delays for path P1, P2, and P3
are 31, 32, and 38, respectively. If we are to test two paths, paths
P3 and P4 will be selected based on the worst-case analysis.

If we statistically stimulate 1000 sample instances of the ex-
ample circuit according to the delay distributions (assuming that
they are normal), then among these instances, roughly 436 of
them will have P1 as the longest path. P3 will appear to be the
longest path on 236 instances. P4 will only be the longest path
on 137 instances. From this perspective, one may argue that

Fig. 1. Illustrative example.

Fig. 2. Critical probability.

in order to maximize the chance of capturing a defective chip,
testing P1 and P3 will be better than testing P3 and P4.

Whether to test or to test depends on the
test clock selected and the target quality level. One way to an-
swer this question is to statistically simulate a large number of
sample chips and then analyze those chips whose delays exceed
the given test clock.

A statistical timing model utilizes probability distributions to
replace the delay bounds in traditional discrete-valued timing
analysis. Using delay distributions facilitates more detailed
analysis in order to better answer the questions mentioned
above. This motivates us to study the critical path-selection
problem from a statistical perspective.

We note that if pin-to-pin delays are characterized as random
variables, then the delay of each path can be characterized as the
summation of all pin-to-pin random variables on the path. The
summation can be done by the convolution of the two random
variables. For example, the delay of path P1 in the example is
also a random variable whose probability distribution is the con-
volution of the two pin-to-pin random variables from “ ”

and . Note that the calculation of this sum-
mation depends on whether the two random variables are corre-
lated or independent.

A. Critical Probability

If the timing model becomes statistical, the definition of a
critical path can no longer be deterministic. In this paper, we
define a critical path based on a given reference clock. We define
the critical probability of a path as the probability that it exceeds
the given clock (Fig. 2).

Suppose that a statistical timing model is given. From the
model, we derive sample instances each with a different delay
configuration. Suppose that a path has a critical probability

. Intuitively, this estimates the percentage of the sample
instances where is greater than the . If is used as the test
clock, then by testing (checking if the delay of is on
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Fig. 3. Path correlation and diminishing test return.

every sample instance), roughly samples would fail the
clock. Hence, the critical probability can be thought as a way
to measure, if is tested based on , the probability of a chip
failing. From another perspective, the critical probability can be
thought as a way to measure the return of testing the path. For
example, testing would remove the failing samples.
Afterwards, we only need to continue testing of the remaining

samples.
The most critical path can be defined as the one that has the

largest critical probability. The critical probabilities allow us
to rank paths. This probabilistic view of path timing suggests
that more sophisticated analysis is required for selecting critical
paths for delay testing.

B. Path Correlation in Delay Fault Testing

Statistically, if two paths have a substantial overlap, then
the return of testing the second path after testing the first path,
should be reduced and is not the same as by testing of the
second path alone. We call this statistical correlation between
two paths as path correlation. Here, the return of testing can be
thought as the the probability of capturing additional bad chips
that have not been classified as defective chips so far.

Take Fig. 3 as an example. The arrival times of the paths are
characterized in terms of their means and standard deviations
at circuit primary outputs (POs). Three paths are shown in the
example with the probability density functions (pdfs) denoted as

(path A), (path B), and (path C). If two paths
are to be selected (based on a given clock , for example 25.5),
simply choosing the two most critical paths would include paths
A and B.

Suppose path A is first tested, and it is ensured that its output
arrival time is within the given clock period . Then, after
testing path A, we need to calculate the conditional timing pdf
for path A. This is because if chips are tested and chips are
classified as bad chips by testing path A, the timing pdf of path
A on the remaining chips should be different. The new pdf
is the conditional probability distribution given that the arrival
time of path A is less than .

The change of the pdf on path A (from its original pdf to
the conditional pdf) suggests that implicitly, testing path A has
already tested a significant part of path B due to their overlap.
Hence, by knowing the fact that path A is less than , the

Fig. 4. Path correlation illustrated by a Venn diagram.

chance of path B exceeding (on the remaining chips)
becomes smaller. This is reflected in the reduced return of
testing path B afterwards, as shown in the figure.

Consider path C that is topologically independent from path
A. Since statistically path C is slightly “shorter than” path B,
testing path C after path A may give a better return than testing
path B. We note that topological independence does not directly
imply that path C is a better choice after path A. To answer this
question, we need to recalculate the pdf of path B based on the
change of the pdf on path A.

C. Notes on Path Correlation

Fig. 4 illustrates the path correlation concept in terms of a
Venn diagram. The total critical probability is the probability
that there exists a path whose delay is greater than the given
clock. The area denotes the shared critical probability
by path and path , which characterize how much the two
paths correlate. From the Venn diagram, it is clear that by con-
sidering this path correlation, we would want to select paths
to maximize the coverage of the area in the total critical prob-
ability space. If we change the total critical probability space
to be a space with discrete elements, then it becomes a tradi-
tional Maximum Coverage problem that has been well-studied
in the literature [14], [15]. Later in Section VII, we will discuss
this problem in more detail.

We note that for a given circuit, the total critical probability
based on all paths of the circuit is the probability that the cir-
cuit delay is greater than the reference clock used to derive the
critical probabilities (We do not consider path sensitization in
this work). If three paths and a reference clock
are given, then the total critical probability of these three paths
is:

where means AND and means OR.
is the shared probability between

path and path . Moreover, we have



WANG et al.: CRITICAL PATH SELECTION FOR DELAY FAULT TESTING BASED UPON A STATISTICAL TIMING MODEL 1553

Also note that our definition of the path correlation is based
on a given reference clock. For a given path whose critical prob-
ability is zero, it correlates to none of other paths even though
it may topologically overlap with many paths. From the Venn
diagram example, we can see that our definition of the path cor-
relation is from a delay-testing point of view.

D. Path Correlation From Nonoverlapping Paths

Path overlap is only one possible reason that paths can have
shared critical probabilities. Another reason can be due to in-
tradie process variations. Hence, even though paths and
are topologically independent, they can still have a shared crit-
ical probability. Testing would have implicitly tested some
part of . In this work, we assume that process variations (in-
tradie or interdie) have already been modeled in the statistical
timing model in use. Hence, by defining the path correlation as
the shared critical probability among paths, path overlap implies
path correlation for two paths whose critical probabilities are not
zero. We note that the reverse is not true.

In a statistical timing model, if we assume that the delay
random variables on path and those on path are indepen-
dent, then testing path should not change the critical proba-
bility of path . This means that, out of samples, if testing
can identify failing samples, then for the remaining sam-
ples, the critical probability of path stays the same. In other
words, suppose that the critical probability of path is .
Then, testing on the samples would identify failing
chips. Testing on the remaining samples would identify

failing chips. Hence, even though the numbers of
failing chips captured by testing path in these two cases are
different, the remains the same.

E. Path Independence

If a (spot) defect that falls beyond the topological coverage
of a selected path set, then this defect has no chance of being
detected. Hence, the selection of critical path also needs to con-
sider path independence [6], [7] so that selected paths can cover
as many circuit segments as possible. Here, the path indepen-
dence is defined strictly from the topological point of view.
Hence, if two paths overlap, then they are not independent. Oth-
erwise, they are. Later in Section VI, we will discuss heuristics
to solve this problem.

In summary, path selection for delay fault testing in the sta-
tistical domain should consider two objectives. First, we need to
consider path independence in order to maximize the topolog-
ical coverage. Second, we need to select paths with high critical
probabilities where path correlation is taken into account. Due
to the inclusion of path correlation, it would be difficult to de-
velop a good heuristic to simultaneously select paths as those
algorithms proposed in [6], [7]. Hence, in this paper, we focus
on heuristics that follows a path-by-path selection process.

IV. PROBLEM FORMULATION

A circuit is a graph with five-tuple , where
is a set of vertices, is a set of arcs, and are two subsets

of where . is a function on . is
a random variable defined over .

This view of the circuit is consistent with the statistical timing
model defined based upon cell-based pin-to-pin delay random
variables proposed in [5]. We note that in the model, delays on
both pin-to-pin of a cell and on the interconnects are modeled
as random variables. In essence, the function characterizes the
random variables while each vertex corresponds to an input or
output point of a cell. We note that in this circuit model, the delay
random variables can be correlated, i.e., can be correlated
with for any . This circuit model is supported in our
false-path-aware statistical timing analysis framework [16].

For simplicity, the circuit model is simpler than that actually
simulated in the statistical timing analysis framework. To sim-
plify the presentation, we do not differentiate between rising and
falling transition delays. However, in the actual experiments,
rising and falling transition delays are separated.

A path on is defined as a path starting from a vertex in
and ending at a vertex in . Let . The timing
length of , denoted as is a random variable character-
ized by the joint distribution .
For each vertex , the arrival time denoted as

is a random variable characterized by the joint
distribution , where each

, ending at . The circuit delay of is de-
fined as a random variable characterized by the distribution

, where .
Given a path set , the induced circuit of on , denoted as

, is a subcircuit where any edge segment not on a
path in is removed from . Hence, may contain
paths that are not in .

Let be a defect distribution function defined on , which
adds delay random variables to some circuit segments. We use

to denote the resulting circuit model after defects are in-
jected on the circuit model , and to denote the resulting
path after defects are injected on a specific path .

Definition 1 (Problem Definition): Given a circuit , a defect
distribution , and an integer , find a path set of paths such
that the following conditional probability is minimized:

In other words, is defined as the conditional probability
that the circuit delay is greater than the clock
after all paths in have been ensured to be .

A. Defect Distribution

Problem 1 above is not well-defined unless a specific defect
distribution is given. There can be two ways to define .

Definition 2 (Segment-Oriented): can be a function de-
fined on , where is a random variable
characterizing the probability of a defect occurrence on , and

is a random variable characterizing the delay defect size. Usu-
ally, we can assume that and are independent.

Definition 3 (Path-Oriented): Similarly, can be a function
defined on all paths, where each .

In general, since may depend on the length of , and
so does , the two random variables are not independent.
Moreover, due to path overlap, for two paths and ,
and may not be independent. Similarly, and may not
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be independent. Because of these aspects, the optimization
problem associated with a path-oriented function could
be much harder to solve than that with a segment-oriented

function. Moreover, measuring defect distribution using a
path-oriented model can be difficult in reality.

In this paper, we consider a segment-oriented function. For
simplicity, we further assume that and are independent for

. We also assume that and are independent.
Example 1: With single-site uniform delay defect assump-

tion, , where
.

V. OPTIMIZATION OBJECTIVES

Given a segment-oriented defect distribution , we refor-
mulate the problem slightly. To minimize , we will try
to maximize , where is defined as below. For
a selected set of paths , let denote the event “defects
fall on .” Let denote the event “there is a path
such that ” for a given test clock

(1)

(2)

(3)

We note that is the probability that by testing
, any defect on can be captured. This probability is

for ( represents OR) and can be
thought as the total critical probability of paths
after the defect function is applied on those paths.

In contrast, is the probability that by testing
, defects can be captured given that these defects fall on .

Further, note that given a path can be rewritten as
, where is the random variable denoting the addi-

tional delay caused by the defect distribution function .
Given a defect distribution function , by assuming that

is independent of , we can remove the conditional
event in (3) and obtain a simpler equation for

(4)

This is because if defect locations are independent of defect
sizes, events and become independent and

.
While the objective tries to maximize the topological

coverage of a path set , the goal of the objective will
be to maximize the total critical probability resulting from .
Hence, the optimization objectives defined in (1) correspond to
the two objectives discussed in Section III.

Theorem 1: , where is the
probability of defects having no faulty effect on circuit timing.

Proof: It suffices to show that the event spaces defined in
the three probabilities are disjoint. Suppose that a circuit in-
stance is given (We note a circuit instance is a sample
instance randomly derived from the statistical circuit model ).
Further, assume that some defects occur on the cir-
cuit, with sizes , respectively. Then, there are three
cases to be discussed.

• All have no effect on the circuit performance. In this
case, , and this instance should be
accounted for .

• At least one affects circuit performance (i.e.,
). For a defect affecting circuit per-

formance, observe that if it falls beyond the topological
coverage of , it has zero probability of being detected.
Then, for all defects on , if any one causes a path in

to have a delay greater than , then it is classified as
a “capture” . Otherwise, the defect
will be missed because we have after
making sure that the event “ ”
is true. Hence, the circuit instance will be classified as
either a capture or a miss but not both.

• All defects affect circuit performance. In this case, the
argument is similar to case 2.

Since the event spaces defined in the three probabilities are
disjoint (and they form the total space), the theorem holds.

Note that depends only on the circuit and the defect
function , and is independent of . Therefore, to minimize

, we can try to maximize .

A. Testing With and Without the Defect Function

In the proof of Theorem 1 above, we assume that without
a defect (or defects have no timing impact on a circuit),

. In general, this assumption is not true. However,
we can think that this is due to a two-stage process. In the
first stage, the objective is to test against the timing model
without assuming a defect function . In this case, we may
use . is excluded because
we assume that no random defect is involved. The event
here should be “there is a path such that .”
Accordingly, we also change the miss probability as

. After this stage,
we assume that for a remaining chip passing in the
first stage, (with a very high probability) if
no defect function is involved. Then, in the second stage,
a defect function is introduced. In this paper we define
timing validation as testing against without .

In delay testing, our goal is to capture random errors that may
be caused by spot defects. In actual timing validation, the goal
should be to correct systematic errors that may be caused by the
difference between the intended design behavior and the actual
design behavior. This involves diagnosis of systematic errors in
the statistical timing model used to produce the design [17]. In
our case, timing validation can be seen as a screening step to
achieve .

B. Maximizing

Given a circuit , a defect function , and a path set ,
and can be estimated independently. However, it is impor-
tant to note that to maximize , it is not sufficient to max-
imize and independently. This is because these two
objectives can be opposite to each other during the selection of

. In other words, the optimal to maximize may not be
the same optimal to maximize . However, we also note
that if this can be done with the same set of , then obviously
the same also maximizes as well.
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Without knowing if a single optimal set exists for both
(and, hence, for ), we consider the fol-

lowing three questions.

1) Independently, how do we optimize ?
2) Independently, how do we optimize ?
3) Can we combine the answers for question 1 and question

2 to optimize ?

VI. OPTIMIZING

Given a circuit , a path set , and a segment-oriented defect
distribution , let be the set of segments covered
by . Then, we have

(5)

where is the joint probability distribution of
all random variables . If are mutually in-
dependent, then we have

(6)

Hence, to maximize in (6), we will focus the discussion
on the following optimization problem.

Definition 4 [Maximum Path Cover (MPC)]: Given a circuit
graph , a weight assignment function de-
fined on such that , a path candidate set , and
an integer , the problem is to find a subset of paths from

such that the total weight cover is maximized.
In the MPC problem, we use the weight to denote the prob-

ability of defect occurrence . The path set is called
the Universal Path Candidate Set. The construction of a set
will be discussed in Section IX-B later. In our path-selection
methodology, a path filtering step is first applied to eliminate
false as well as timing noncritical paths. The remaining paths
after the path-filtering step form the candidate set that serves
as the basis for critical-path selection [16], [18].

A. Strategy to Study the MPC Problem

Fig. 5 illustrates the strategy to study the complexity of the
MPC problem. This type of strategy is quite typical in theoret-
ical computer science for studying the complexity of a newly-
defined problem.

To show that the MPC is intractable, we identify a known in-
tractable problem and construct a reduction scheme so that every
problem instance in the intractable problem can be efficiently
translated into a problem instance of MPC. The intractable
problem that we identified was the weighted maximum vertex
cover (WMVC) problem (as explained later). The reduction
from the WMVC problem to the MPC problem implies that
solving the MPC problem is as hard as solving the WMVC
problem.

To utilize existing heuristics to solve the MPC problem, we
identify another problem called Max-C and construct a reduc-
tion scheme to reduce the MPC problem to the Max-C problem.
Through this reduction, any known heuristic for solving the
Max-C problem can be applied to solve the MPC problem.

Fig. 5. Illustration of our strategy to study the MPC problem.

In the following, we discuss the first reduction scheme to
show that the MPC problem is intractable. After that, we will
discuss the second reduction scheme so that known heuristics
can be applied to solve the MPC problem.

B. Intractability of the MPC Problem

One problem related to MPC is the minimum vertex cover
(Min-VC) problem discussed in [14]. Given an undirected graph

, the Min-VC problem is to find the minimum set of
vertices that cover all edges. It is shown in [14] that Min-VC is a
problem in the MAX-SNP class, meaning that finding a
polynomial time approximation algorithm is NP-hard [14]. That
is, if the optimal size of vertex cover to the problem is OPT, it
is NP-hard to guarantee a vertex cover with size
for any , where .

There is a slightly different version of the Min-VC problem
called the Maximum Vector Cover (Max-VC) problem. The
problem is, given an integer , find a set of vertices that cover
the maximum number of edges. Petrank [15] shows that it is
also NP-hard to find a -approximation algorithm for the
Max-VC problem.

The generalized version of the Max-VC problem is called
the maximum coverage (Max-C) Problem. Given a set

. Let denote the indices of all nonempty subsets
of , and denote the th subset with index . Given a
set , a nonnegative weight for each ,
and a positive integer , the problem is to find a subset
where such that the total weight of all which have
nonempty overlap with is maximized.

To give an example of the Max-C problem, consider a
set . All nonempty subsets of would be

. To construct a Max-C
problem instance, we select with a
weight assignment , respectively. If we
are allowed to choose two numbers to maximize the weight
coverage, we would select 2 and 3 from so that the total
weight is 0.9 (including weights from because

, and ).
Let . The Max-C problem is a gen-

eralized version of the Max-VC problem because in the Max-C
problem, if and all , then the Max-C problem
is reduced to the Max-VC problem. If we allow any weight as-
signments, but keep the constraint , the Max-C problem is
reduced to the weighted version of the Max-VC problem (that
is WMVC). We note that for , each subset can be thought
as an edge connecting two vertices. Hence, the Max-C problem
becomes a graph covering problem. For , it is the same as
solving the WMVC problem on a hypergraph.

Lemma 1: MPC problem is intractable.
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Fig. 6. Example of WMVC-to-MPC reduction scheme.

Proof: To demonstrate that MPC is intractable, it suffices
to develop an efficient (polynomial time) reduction scheme to
translate any WMVC problem instance into an MPC problem
instance. Here we explicitly state the WMVC problem. Given
an undirected graph , a weight assignment

for all , and a positive integer , find a -vertex
cover whose total covered weight is the maximum.
Given a problem instance of WMVC, we will reduce it into
an MPC problem instance using the following polynomial time
reduction.

1) Create two nodes and .
2) Order all edges as where .
3) Pick a vertex , create a path where starts

from and ends at , and contains all ordered edges
connecting . Add to the path set.

The following “pseudoedges” with weight assignments
equal to some fixed small number close to zero are added
to connect in order to form a path.

• Add a pseudoedge from to .
• Add a pseudoedge from to .
• For any adjacent edges , add a pseudoedge

from to .
4) , if is empty, stop; otherwise, go to step 3.
Fig. 6 illustrates the reduction scheme with a simple example.

The graph contains four vertices and four edges or-
dered as . In the transformed path problem instance,
for example, edges 1, 3, and 4 have as their end point and,
hence, “path ” passes through edges 1, 3, and 4 and skip 2 with
a pseudoedge (denoted as a dashed edge). The resulting MPC in-
stance contains four paths path path path path in the

set, where each path corresponds to a vertex.
It is obvious that the above reduction is an algo-

rithm. By keeping the weight assignment for each original edge,
the MPC problem is to find paths from to cover the max-
imum total weight. If we ensure that the total weight given by all
pseudoedges is far less than the minimum edge weight assigned
in the original WMVC problem, then those pseudo edges will
have no impact on the total weight calculation for the optimal
solution.

Let denote the total weight covered by a solution
in MPC and denote the total weight covered by a solu-
tion in WMVC. Then, for any two solutions in MPC,
where , there exist two corresponding solutions

in WMVC (just map a path back to its corresponding
vertex) such that . The
same ordering in the solution spaces of the WMVC and WPC
instances implies that if the optimal solution is unique, it is the

Fig. 7. Example of MPC-to-Max-C reduction scheme.

same in both instances. Moreover, given an , if
there exists a polynomial time -approximation algorithm
for MPC, then it implies that there exists a polynomial time

-approximation algorithm for WMVC. Hence, the MPC
problem is intractable.

C. Heuristics to Find Approximate Solutions for MPC

In this section, we will discuss heuristics to solve the MPC
problem. Most of these heuristics have been analyzed for the
Max-C problem. Therefore, to facilitate the discussion, we will
first show a polynomial time reduction from MPC to Max-C.

Lemma 2: Given that the size of path set is of polynomial
size in terms of , MPC is polynomial-time reducible to Max-C
such that if there exists a polynomial time -approximation
algorithm for Max-C, the algorithm is a -approximation
for MPC.

Proof: The mapping from MPC to Max-C is straightfor-
ward. Fig. 7 illustrates the idea with a simple example. Let

be the path candidate set. We simply let
in the Max-C. Each in the Max-C problem

corresponds to an edge . Hence, the weight of each
is also the weight for . We also have if contains
the edge . Essentially, the MPC problem is the same as the
WMVC problem on a hypergraph.

The above reduction further implies that if there exists a
heuristic that can give a good approximate solution for the
Max-C problem, then the heuristic can also provide a good
approximate solution for the MPC problem.

1) Linear Program Relaxation (LPR) Heuristic: Authors in
[19] utilize LPR to solve the Max-C problem. They demonstrate
that the LPR heuristic is a -approximation algo-
rithm, where . For WMVC, and
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hence, LPR heuristic is a -approximation algorithm. With
Lemma 2, the LPR heuristic is also a -approxi-
mation algorithm for the MPC problem, where is the maximum
path length measured by the total number of edges on a path. It
is interesting to note that if a circuit is shallow (e.g., the path
length is small), the LPR heuristic will perform better.

The LPR heuristic requires solving LP problem for maxi-
mizing alone. If we adopt this heuristic, it is hard to see
how to combine it with any other heuristic(s) used to maximize

later. Since our final goal is to maximize , not just
, the LPR heuristic is not a suitable candidate even though

it is the best approximation algorithm known for the MAX-C
problem.

2) Greedy Heuristics: In the following, we discuss simple
“greedy” type of heuristics. Our first greedy heuristic is a typical
and widely-used one in many optimization applications.

Heuristic 1: In each step, select the path that results in max-
imum additional weight coverage.

Theorem 2: The greedy heuristic in Heuristic 1 is a
-approximation algorithm for MPC problem, where

is the number of paths allowed in the problem.
Proof: It is well known as shown in [20] that the same

greedy heuristic is a -approximation algo-
rithm for the Max-C problem, where is the number of selected
points (vertices) allowed in the problem. Hence, by Lemma 2,
the theorem holds.

As becomes large, the greedy heuristic approaches to
-approximation, where is the natural number.

Heuristic 2: Sort all paths according to their total weights
covered. Select the largest paths.

Let be the number of total paths in in an MPC instance
(vertices in WMVC). Authors in [21] shows that the above
heuristic for WMVC problem is a -approximation al-
gorithm. However, the same argument used in [21] does not
hold for WMVC on a hypergraph. This is because an edge on a
hypergraph can connect more than two vertices.

Actually, one can construct an MPC instance to make the per-
formance of Heuristic 2 as bad as possible. In fact, let
as the sorted paths with total covered weights . It
is easy to construct an instance to “fool” the heuristic by making
the first paths exactly the same except for the last
edge segment. And for each last edge, we associate a very small
weight . On the other hand, for all , we make
them all independent with each total covered weight all equal
to “ .” It is easy to see that the only bound we can have by
Heuristic 2 is then, . That is, the heuristic guarantees the
selection of the first maximum-weight path, but nothing more.

Theorem 3: The Heuristic 2 is a -approximation algo-
rithm for MPC problem.

The best know heuristic is the -approxi-
mation by LPR, and the Heuristic 2 essentially is an unbounded
algorithm. That is, as becomes sufficiently large, this simple
heuristic can perform poorly.

Heuristic 3: Sort all edges according to their weights. In each
step, select a path that covers an uncovered edge whose weight
is the maximum.

Let . The following theorem is straightforward.

Theorem 4: Heuristic 3 is a -approximation algorithm
for MPC problem, where is the number of edges covered by
all paths in .

Proof: Let the sorted edge weights be .
Let Sol be the solution weight given by the heuristic. It is clear
that . Also,
because Sol contains the largest-weighted edges. Hence, the
theorem holds.

Since we usually expect that , this heuristic provides
a much better bound than the second heuristic.

VII. OPTIMIZING

Given a path . Let
. We denote the critical probability of as

for a given reference clock .
Given two paths with initial critical probabilities

, respectively, the
may not be the same as . We define

. Hence,
.

Similarly,
. We observe that the correlation is symmetric

between and .
characterizes the correlation factor (or shared

critical probability) between paths (as described in Sec-
tion III before).

Suppose that we rank all paths in according
to their critical probabilities . If we select

, following the same spirit in traditional path
selection where the longest paths are usually selected, how
well will this perform with respect to maximizing ? We
analyze this question below.

A. Change the Objective of Maximizing

To maximize , we would select a path set such that
the probability of capturing any defect on can be maximized

. In Section V, we have explained that this proba-
bility is

for .
Given two paths , we have

and , where are the random
variables denoting the additional delays caused by the defect
distribution function . If we adopt the single-defect assump-
tion, then . This is because there is only one defect
occurrence and hence, both paths have the same defect size. In
this case, if then

, and
vice versa. Moreover,

. If is a fixed
value, to maximize , we would maximize the probability

where is the new reference clock.
In practice, is a random variable whose distribution may

not be known in advance. Hence, to maximize , we would
simply maximize the probability
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for a given clock .
Strictly speaking, maximizing is not the same as maxi-
mizing , unless the defect size is fixed.

Without the single-defect assumption, we would maximize
the probability

, where are the
random variables for the defect sizes on these paths. Similarly,
without knowing what are, the logical approach is
again to maximize the probability

.
Furthermore, we mentioned before that in timing validation,

is the objective to be maximized. Hence, instead of maxi-
mizing which may not be a well-defined problem, we can
try to maximize . Maximizing provides another ad-
vantage: the result does not depend on the defect function. This
is an important feature because in reality, perhaps no one can
100% correctly characterize the true defect function.

We note that the optimization of depends on the refer-
ence clock . In this paper, we do not study the selection of
this reference clock. However, it will become clear later that the
selection of this clock does impact the selected path set. The in-
tuition is that with a larger clock period, critical probabilities are
more important than path independence during path selection.
In other words, with a larger clock period we would favor the
selection of long timing paths. On the other hand, with a short
clock period, we would favor the selection of more independent
paths.

B. Analogy to the Optimization of

Given a circuit , we first consider
optimizing based on a fixed-delay model where

for some fixed constant .
Lemma 3: With the fixed-delay circuit model above, the op-

timal solution path set for maximizing is to select the
longest paths.

Proof: It can be observed that if consists of the longest
paths, then for an edge on the induced subcircuit ,
the longest path that covers the edge in must be included in

. Hence, is maximized for all the edges on the subcircuit
.

We note that with a fixed-delay model, the concept of path
correlation does not apply. However, the concept of path inde-
pendence does apply. Lemma 3 does not imply that selecting the

longest paths would result in an optimal path set for testing.
In the lemma, the path independence is not considered.

Next, we consider the case for where
is a random variable characterizing the delay on edge . The

Venn diagram illustration in Fig. 4, provides a good perspec-
tive to derive an analogy to the problem of maximizing .
Consider the following problem. Given a set of elements

. Given a set of subsets derived
from , our goal is to select subsets such that they cover the
maximum number of elements in . This is the un-weighted ver-
sion of the maximum coverage problem (MCP). In the weighted
version of the MCP problem, a nonnegative weight is asso-
ciated with each element . Then, the objective is to maximize
the total weight covered.

Fig. 8. Difficulty of mapping the probability space to MCP.

MCP is a different version of the Max-C problem discussed
above. The authors in [20] shows that the simple greedy
heuristic as Heuristic 1 is a -approximation algo-
rithm for the MCP problem. Hence, in the unweighted version,
each time we would select a subset that has the maximum
number of uncovered elements. In the weighted version, we
would select a subset to maximum the additional weight
coverage.

C. Heuristic to Maximize

As illustrated in Fig. 4 before, maximizing is to max-
imize the coverage of critical probability in the total critical
probability space. If we can translate the total critical prob-
ability space into the weighted -element set in the MCP
problem, then we can show that the greedy algorithm is also
a -approximation algorithm for maximizing .
Unfortunately, this translation may not be easy.

Fig. 8 shows three paths . In order to convert the
total probability space into a weighted -element set as that
in MCP, we need to consider all the partitions resulting from
the intersection of individual probability subspaces. In this case,
there are three paths and hence, the maximum possible number
of partitions is . We then sum up the probability
in each partition to obtain for . Hence, in the
resulting MCP problem instance, we have .
Path corresponds to covers total weight

. Hence, selecting a subset for
is like selecting the path .

Although the above reduction scheme works, it is not a poly-
nomial time reduction, i.e., the size of the set can be exponen-
tial. Given a path set , in general, translation from
its total critical probability space to an MCP instance may result
in a MCP problem with an exponential size in terms of . How-
ever, if we can know in advance that no more than paths can
have a shared probability, for a constant , then the translation
can be done in polynomial time.

Even though we do not know that such an exists, if we can
still try to find a small such that the partitioned subspaces can
be approximated well, then the greedy algorithm can perform
like a -approximation algorithm.

The translation from the total probability space to the MCP
problem space is difficult in theory. However, it is important to
note that if the critical probabilities are calculated based only on

sample instances, then the maximum number of partitioned
subspaces in the total critical probability space is . In this
case, the translation can be done in polynomial time in terms of
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. In other words, if is the number of simulated sam-
ples in Monte Carlo simulation, then it is possible to derive the
weighted set in the simulation.

In summary, our heuristic to optimize follows the same
spirit as the greedy heuristic for the MCP problem.

Heuristic 4 (Greedy by Considering Path Correlation): Each
time, we select the path with the largest critical probability.
After the selection, we recalculate the critical probabilities for
all unselected paths based on their correlations with . In short,
we select the path that can provide the maximum additional cov-
erage of the total probability space.

We state the following observation to summarize our discus-
sion above.

Observation 1: Let Sol be the total critical probability output
by using Heuristic 4 to maximize . Let OPT be the true op-
timal value. We can have , depending
on how complex the path correlation is.

VIII. HEURISTICS TO OPTIMIZE

Recall that . In the previous sections,
we discuss heuristics to maximize and individually.
Based up those results, in this section, we discuss three heuris-
tics to maximize .

• H-Timing: Traditionally, the most natural way is to
select the longest paths. Under a fixed-delay model,
this heuristic optimize (Lemma 3) but has little
guarantee for . With a statistical timing model, this
heuristic becomes the selection of paths with the largest
critical probabilities, and is similar to Heuristic 2. This
heuristic offers little guarantee for optimizing either
or .

• H-Segment: With this heuristic, optimizing has a
higher priority than . Given a circuit instance

and a defect function ,
at each step we select a path that covers the maximum
additional probability of defect occurrence. If there are
multiple such paths, we then select the one with the largest
critical probability. Path correlation is not considered here.
H-Segment follows the Heuristic 1 above and hence, is
an -approximation algorithm for maximizing

. However, it provides no guarantee for optimizing

. Therefore, the performance can be unsatisfactory.
• H-Opt: This is Heuristic 4. The main question here is how

H-Opt would perform with respect to . If every se-
lected path by H-Opt can include an additional uncovered
circuit segment, then H-Opt is a -approximation
algorithm for optimizing , under the condition that
the defect occurrence probabilities are the same for all
segments (ex. uniform distribution).

Consider an ordered path set selected
by using H-Opt in that order. Let . For
any and , we want to have

so that will not be
selected after selecting . This means that in the critical
probability space, the union of all the critical probabilities
from paths in is equal to the critical probability of .
In other words,

. If this is true, then for the original
circuit , we can have

for some path set ,
where and . This is
unlikely to be always true.

Nevertheless, notice that the critical probabilities are defined
based on the reference clock . For the purpose of path selec-
tion, this reference clock does not need to be the same as the test
clock. We observe that by setting a short reference clock period,
each selection of H-Opt would tend to include a path that con-
tains uncovered circuit segments. In fact, if we set the reference
clock period short enough, we can always make H-Opt to be-
have as Heuristic 3. In the extreme case, suppose that we set the
reference clock at 0. Then, after testing a path, all segments on
the path would have been ensured to have delay 0. Hence, it is
obvious that .

Observation 2: Between a given test clock and 0, we can find
a reference clock so that when using H-Opt to obtain a path
set , we can have

for and . In this
case, for every path , there exists a segment edge

such that and .
Observation 3: Suppose that defect occurrence probabilities

are all the same. Then, it is possible to find a short enough refer-
ence clock period such that H-Opt behave as Heuristic 3 for
maximizing . In this case, suppose that the optimal value
is (based on clk). H-Opt computes a
solution value Sol for maximizing . Then, we can have

, depending on how
complex the path correlation is.

Observation 3 suggests that in order for H-Opt to achieve a
good topological coverage, we may want to use a short enough
reference clock period. The selection of the reference clock rep-
resents a tradeoff between optimizing the topological coverage
and optimizing the critical probability coverage. Because H-Opt
is the only heuristic that can simultaneously address the opti-
mization of both objectives, we expect that H-Opt should be
better than H-Timing and H-Segment. In this following section,
we will present experimental results to support this conjecture.

IX. EXPERIMENTAL RESULTS

Our goal in this section is to provide experimental results in
order to support our theoretical analysis in the previous three
sections.

A. Approximate Path Correlations

The statistical method described in [16] provides a feasible
approach to calculate the critical probability for a given path.
In order to implement Heuristic H-Opt, we need a method to
compute the shared critical probabilities among paths.

For the recalculation of critical probability after paths
are selected, , we use a Monte Carlo sampling
approach to approximate the desired results. At first, we sample

chip instances, each with a different delay configuration
derived from the statistical timing model. Suppose path is
selected. Then, we remove all instances whose delays of path

is greater than the reference clock. Suppose this leaves us
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Fig. 9. Universal path candidate set.

instances. Based on this instances, we recalculate
the critical probabilities. In other words, for another path ,
we simply count the number of instances whose delays of
path is greater than the clock. Let this number be . Then,
the new critical probability of path is .

We note that even though paths have no path correlation,
it does not mean that there cannot be a circuit instance where the
delay of path and the delay of path are both greater than
the clock. Hence, among the instances removed due to the se-
lection of path , some of them may have a delay of path
greater than the clock. However, because and have no cor-
relation, in theory, removing these instances should not change

’s critical probability (as discussed in Section III-D).
Further note that our method to account for path correlations

is only a quick approximation. Our goal is to obtain experimental
results in order to assess the performance of H-Opt. Hence,
the method is by no mean an optimal approach to implement
H-Opt. In fact, after each step of path selection, the number
of instances is continuously reduced. Therefore, the critical
probabilities calculated at a later stage in the path selection
process will be less accurate than those calculated at the
beginning.

B. Universal Path Candidate Set

One key assumption during the theoretical analysis is that
the number of paths being considered during path selection is

, where in a given circuit model . Without pre-
processing, this is an unrealistic assumption because a circuit
can easily have an exponential number of paths. In this section,
we discuss a simple path-filtering scheme as the preprocessing
step in the path-selection optimization process. During this pre-
processing step, the goal is to quickly cut down the size of total
path population.

In our methodology, we construct the universal path candi-
date set [22] as illustrated in Fig. 9. The size of is much
smaller than the number of all paths and hence, coverage of
can be calculated much faster. We also ensure that by covering

, the probability of circuit delay greater than the clock is very
small. That is,

. Then, the set serves as the basis for later path selection.
If in our statistical framework a path has a very low proba-

bility of being a “long path,” then in reality, we assume that it
is unlikely for a small delay defect or variation on the path to
cause a timing problem. In other words, we assume that the sta-
tistical timing model can correctly model the delay variations in
reality. With this idea in mind, construction of are based on

TABLE I
EXAMPLES OF U PATH SET SIZES AND RUNTIMES (IN SECONDS)

TABLE II
RUNTIMES FROM THE PATH SELECTION USING H-Opt (s5378)

two given parameters: a reference clock and a cutoff period
where .
The consists of every path whose critical probabilities are

greater than zero based on the cut-off period . In other words,
if all paths in are covered, then any faulty behavior resulted
from delay defect and variation of a delay size smaller than

can be captured (small-size defects). This assump-
tion is consistent with our goal to capture small-size delay de-
fects. In other words, we can assume that transition fault testing
is applied before testing of the critical paths. Hence, large-size
delay defects (whose delay sizes ) will have been captured
by transition fault testing.

After an initial set is established, we can further prune the
size of by removing those functionally unsensitizable paths
[23] using the new methodology developed in [16]. This can
further reduce the size of the path set.

C. Experimental Setup

Our experimental flow consists of three major phases, path
set construction, path selection, and quality evaluation as de-
scribed below.

1) Path Set Construction Phase: A cell-based statistical
timing analysis framework was developed [5]. It requires
precharacterization of cells, i.e., building libraries of pin-pin
cell delays and output transition times (as random variables).
For our experiments, we utilize a Monte-Carlo-based SPICE
(ELDO) [24] to extract the statistical delays of cells for a
0.25 m, 2.5 V CMOS technology. Each interconnect delay
is also modeled as a random variable and is precharacterized
once the RCs are extracted. This framework uses Monte Carlo
simulation techniques to approximate the critical probabilities.

To construct the path set, a cut-off period is selected. At
first, all paths with nonzero critical probabilities are included.
Then, techniques proposed in [16] are applied to remove logic
and timing false paths.

The selection of affects the size of the path set and limits
the size of defect guaranteed to be captured. Although the log-
ical approach to decide should be based on manufacturing
data with characterization of delay defect sizes, for experimental
purpose, we took a simpler approach.

Given a circuit model , for each circuit segment , we ran-
domly select a path to cover . If the total number of circuit
segments is , this would give us paths . Let
their worst-case delays be , respectively.
We would set . This process is to
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Fig. 10. Using sample-instance-based approach by assuming e .

Fig. 11. Comparison results by assuming e .

approximate the results of transition fault testing. Therefore, our
selection of ensures that the critical path selection step focuses
on detection of only small-size defects.

Table I presents results to demonstrate the impact of on
the size of path set by setting at different values. All ex-
periments were obtained on a Pentium III 733-MHz machine
running Linux mdk version 2.2.17. The runtimes depend on the
desired accuracy in the converging criteria to stop the Monte
Carlo simulation. Hence, the runtimes depend on the number of
instances simulated. The results in Table I are based on simu-
lation of 1000 sample instances. We note that from our experi-
ence, simulating a few thousands of samples is usually enough
to stabilize the results in our experiments.

For the cut-off period , the number 170 is roughly 17 ns. As
it can be seen, depending on the selection of , the size of a
path set can change. In general, the path set sizes remain to
be manageable [25].

The construction of a proper path set to optimize its size
and effective coverage will continue to be an interesting research
topic. This paper does not focus on the optimization of the path
set .

2) Path-Selection Phase: In this phase, we apply each of the
three heuristics (H-Timing, H-Segment, and H-Opt described in
Section VIII) to derive a path set where .

Normally, the path selection is done following a path-by-path
basis. However, for comparison purpose, we also experimented
H-Timing and H-Segment where the path selection follows a
sample-by-sample approach.

3) Sample-Based Path Selection: In these experiments, we
first produce sample circuit instances. Then, a path selection
heuristic is applied to one sample instance after another. This
process will produce a sequence of path sets .
Then, the final path set is formed by collecting the paths
with the highest frequencies to appear in .
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Fig. 12. Using sample-instance-based approach by assuming e .

Fig. 13. Comparison results by assuming e .

It is important to note that when applying a heuristic to each
particular sample instance, the circuit instance has a fixed delay
configuration. Hence, individually the problem associated with
each sample instance is easier to solve. In our experiments, we
implemented both H-Timing and H-Segment using the sample-
based approach.

4) Evaluation Phase: In our study, we estimate the quality
of selected paths in terms of the miss probabilities. This estima-
tion is calculated based upon paths alone, instead of the quality
of tests generated for those paths [26]. Hence, our metric in-
volves only static analysis and is pattern independent.

Assume that a path set is given. In each Monte Carlo
sampling run, first a circuit instance is derived from the statistical
circuit model . A random-location defect is injected on the
circuit instance. The size of this defect is derived randomly from
an exponential distribution explained below. This instance will

then be evaluated by two steps: “analysis of ” and “analysis
of ”. The “analysis of ” is to check if there is any
path in longer than the test clock . If there is, then this
instance is said to be faulty and covered by Covered . If
the instance is not covered by , the “analysis of ”
step performs a similar analysis on the set of paths .
If there is any path in longer than the test clock, then
this instance is faulty but is not covered by Noncovered .
After simulating instances (say 5000), we calculate the miss
probability as the following:

Noncovered
Covered Noncovered

In other words, the miss probability is the conditional
probability that a delay defect is not covered by given that the
delay defect will affect the circuit performance.
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5) Defect Distribution: In the experiments, the evaluations
are based on the assumption of a defect size distribution function

where is the defect size and is a constant. We use
and in the experiments.

This exponential distribution for defect size (given that de-
fects occur) has been studied in many publications [27], [28] and
is a practical assumption to be used. Note that it is also possible
to adopt other distributions. However, using other distributions
in general does not invalidate the trends observed in our work
[22]. As mentioned before, H-Opt only tries to optimize
and hence, a selected path set does not depend on the defect size
distribution.

D. Results

We first utilize the results from circuit s5378 for detailed
discussion. Results for other circuits are similar and hence, those
results are not shown in detail. Instead, at the end of this sec-
tion, Table III will present additional comparison results be-
tween H-Timing and H-Opt.

For s5378, the cut-off period is set at 202. This results in
a path set with . Table II shows the runtimes of
the path selection step when using H-Opt. The reference clock
is set at 208 which is also the test clock.

The following plots show the evaluation results for different
heuristics. These plots demonstrate the trends of miss probabil-
ities versus the number of selected paths. Results in Figs. 10
and 11 are based on the defect distribution . For compar-
ison, we also derive results for the defect distribution
in Figs. 12 and 13. Random delay samples from range
roughly from 0 to 40, while those from may extend to
100. By using two different defect size models, we can see how
defect size may affect the results of different heuristics.

By comparing all four plots (Figs. 10–13), we see that H-Opt
outperforms all other heuristics as predicted by the theoretical
analysis (with smaller miss probabilities).

In Fig. 10, both sample-based H-Timing and sample-based
H-Segment heuristics have similar levels of miss probabilities.
The two curves converge when the number of selected paths
increases. The sample-based H-Timing curve shows a slightly
higher miss probability than the sample-based H-Segment curve
at 250 paths. When the two heuristics are applied directly in the
statistical domain (Fig. 11), H-Segment is better after 100 paths.
From our theoretical analysis, we know that H-Segment aims to
optimize while H-Timing optimizes none.

More interesting observations can be made when the model
of is used (Figs. 12 and 13). Since the range of defect
size spreads out, more edges have to be covered in order
to maintain a low miss probability. As shown in the figures,
the H-Opt still converges quickly as the number of paths
increases. For sample-based results in Fig. 12, both H-Timing
and H-Segment clearly fail to cover enough edge segments
as required. Notice that H-Timing performs (relatively) much
worse for larger number of paths. This is because selecting
longest paths does not guarantee to cover independent segments.
In Fig. 13, H-Segment can have a similar level of coverage
as H-Opt while the number of selected paths is small. On the
contrary, H-Timing becomes very ineffective.

TABLE III
COMPARISON RESULTS ON LARGE ISCAS’89 BENCHMARKS WITH

TEN SELECTED PATHS

TABLE IV
RUNTIMES FROM H-Opt PATH SELECTION AND QUALITY EVALUATION

TABLE V
COMPARISON RESULTS WITH 20, 30, AND 40 SELECTED PATHS

Table III presents comparison results between H-Timing and
H-Opt for several benchmark circuits using the defect-free sim-
ulation. With defect-free simulation, a faulty instance is the re-
sult of statistical variations. In these experiments, is both the
test clock and the reference clock. These additional results fur-
ther confirm the superiority of H-Opt.

Table IV shows runtimes from the H-Opt path selection step
and from the quality evaluation step. Since the sizes of the
path sets are small in our experiments, the quality evaluation
step can be done quite efficiently.

Table V shows additional comparison results based on 20,
30, and 40 selected paths using the defect-free simulation. It
is interesting to observe that for s15850, H-Opt and H-Timing
perform the same.

Fig. 14 shows the path delay profile from the circuit s15850.
This profile is based on the average path delays. Notice that
there are a few long paths whose delays are much greater than
others. If a design contains only a few paths that are much longer
than others, then both H-Timing and H-Opt will first focus their
selection on these paths. In this case, a small number of selected
paths is sufficient to achieve the complete coverage. This may
partially explain the results for s15850 in Table V.

It is also interesting to see that for s38417, while H-Opt
continues to improve its results as more paths are selected,
H-Timing provides not much help by selecting more paths.
This represents an extreme situation where H-Timing can be
very ineffective and may have selected the wrong paths.
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Fig. 14. Path profile’s average delays (s15850)

X. CONCLUSION AND FUTURE WORK

In this paper, we study the problem of critical path selection
for delay fault testing based on a statistical timing model. We
formulate the problem as an optimization problem that consists
of two theoretically intractable subproblems. We first analyze
various heuristics for solving each subproblem individually.
Then, we analyze these heuristics for solving the original
optimization problem.

We demonstrate that for path selection with a statistical
timing model, it is important to consider path correlation. The
concept of path correlation is not well-defined with a traditional
discrete-valued timing model and hence, was not discussed
before in traditional path-selection methods. The main contri-
bution of this paper is the introduction of the path-correlation
concept into path selection. We show that by considering
path correlation, we can implicitly ensure a certain degree of
topological coverage. The result is the H-Opt heuristic. Based
on our analysis, we suggest that the H-Opt heuristic is better
than the H-Timing heuristic and the H-Segment heuristic, both
of which were derived following traditional thinking of the
path-selection problem.

To support our theoretical analysis, we develop an experi-
mental framework based on statistical timing and defect sim-
ulation. With this framework, we introduce the concept of using
a path set to facilitate our experiments. The introduction of
the path set suggests that our path selection methodology ac-
tually consists of two phases: path filtering and path selection.
This paper focuses on the second phase.

Our formulation of the path-selection problem may inspire
many interesting theoretical developments in the area of delay
fault testing. The statistical timing simulation and evaluation
framework provides a feasible approach to facilitate future re-
search in the area. Future research can include the following
three directions.

1) An important assumption in this work is that the statistical
timing model in use can accurately model the reality. In

practice, this is hardly true. It will be interesting to study
the path-selection problem by assuming that the statis-
tical timing model does not model certain aspects of the
real silicon timing behavior. In this case, the value of the
H-Opt heuristic need to be reevaluated.

2) More research effort should be devoted to study the
construction of an effective path set. The intention of
constructing a path set is to include all paths such that
testing these paths can guarantee timing performance.
Hence, a path set can be thought as a superset of poten-
tial critical path sets. The effectiveness of a path set can
be measured by its size (that affects the runtimes of any
programs based on it) and its quality. path set will play
an important role to study the path-selection problem,
especially when we assume that the timing model can
never be 100% correct. In this case, the superset can
provide a certain degree of tolerance for errors in the
statistical timing model.

3) Like most of traditional path-selection research, this paper
does not include pattern generation into the discussion.
For delay testing, the goal of path selection is to produce
high-quality test set. In this work, we show that H-Opt is
better than H-Timing using our quality evaluation scheme
that involves no pattern. In the future, it is important to
reevaluate all the path-selection heuristics based on their
resulting pattern sets.
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