
610740-7475/00/$10.00 © 2000 IEEEOctober–December 2000

DESIGN IS AN ITERATION of specification

and implementation phases, performed either

top-down or bottom-up before resulting in a

product. Validation is performed at each of these

design phases until the final manufacturing

stage. Correctness of an implementation is not

an autonomous concept, but rather a relation

between a specification and an implementation.

Design validation techniques attempt to estab-

lish a relation between the two entities.

There are a number of approaches to design

validation. No matter how they are categorized,

the ultimate objective of these different

approaches is to ensure that the final product

satisfies customer requirements and does not

fail during operation. Design validation

techniques can be broadly categorized into

simulation-based approaches and formal tech-

niques. Due to the complexity of modern

designs, validation using only traditional scalar

simulation cannot be exhaustive and has

proved to be ineffective in exposing hard-to-

find bugs. This is because of the combinatorial

complexity of the number of states and input

sequences possible for a nontrivial design.

Formal techniques do an exhaustive analysis of

the design but can check only small designs

completely. As the sizes and complexity of the

designs keep growing, formal validation tech-

niques suffer from the state explosion problem.

Unless drastic innovations in data structures

and proof systems come about, validation

methodologies purely based on formal meth-

ods are currently neither feasible nor econom-

ical. Symbolic simulation has proved to be an

efficient technique, bridging the gap between

traditional simulation and full-fledged formal

verification.

Validating PowerPC
Microprocessor Custom
Memories

Due to the high cost of correcting errors in a final

product, there is a growing impetus in industry

towards methodologies that can yield correct

designs in the first manufacturing run. Design

validation methodologies that combine simulation

techniques with formal reasoning can be effective

in ensuring correct operation of software and

hardware systems. We show why simulation is

necessary to complement formal mathematical

reasoning in verifying certain classes of custom

designed circuits. We present a validation

methodology for PowerPC custom memories

based on symbolic simulation.

Narayanan Krishnamurthy

Andrew K. Martin

Magdy S. Abadir

Motorola

Jacob A. Abraham

University of Texas at Austin

Symbolic simulation has been used to verify

embedded on-chip memories of commercial

microprocessors. Prior work focused on estab-

lishing that functional properties held for two

different representations.1–2 No notion of com-

pleteness was established by their methodology.

To the best of our knowledge, this is the first time

that a rigorous symbolic simulation methodolo-

gy has been used to prove the correctness of

switch-level models with respect to the register-

transfer-level (RTL) models for all modes of oper-

ation (functional and nonfunctional).

This article shows why symbolic simulation

is necessary and how it can be used in an effec-

tive validation and design analysis methodolo-

gy. We survey the current state of the art in

validation techniques and compare them with

symbolic simulation. A key established result is

that, for certain types of circuits, simulation is

necessary and current Boolean equivalence-

checking technology is fundamentally inade-

quate.3 We also show how symbolic simulation

can be used as part of a validation methodology

for proving custom memory implementations

correct with respect to a RTL specification.

Finally, we present validation results on the lat-

est PowerPC microprocessor and establish the

need for a symbolic simulation validation

methodology.

Validation Techniques
Errors uncovered by different validation

approaches are classified as design or imple-

mentation errors. Design errors occur when a

specification itself contains errors. Implementa-

tion errors are errors that occur in the realization

(implementation) of the specification. Here, the

specification is assumed to encode the correct

set of behaviors of the design while the imple-

mentation is checked for errors. Our methodol-

ogy seeks to uncover implementation errors.

Any validation approach is prone to two

types of errors. A false-positive error occurs

when the validation technique predicts that an

incorrect implementation is correct. A false-

negative error occurs when the validation tech-

nique predicts that a correct implementation is

incorrect. Clearly, false positives must be avoid-

ed, and false negatives must be minimized. The

desire to produce more reliable products free

of design errors and the need to reduce time to

market (for the same product quality) has result-

ed in a number of validation methodologies.

Simulation
The methodology used in the microproces-

sor and digital systems industry to validate

designs has traditionally been simulation. Farms

of workstations run simulations for months on

the RTL and switch-level models. The product

is taped out when the rate of discovering errors

has dropped below a predetermined value. Due

to the large combination of possible initial state

and input sequences, it is not feasible to cover

all cases exhaustively. Nonetheless, simulation

is relied upon to catch the last (or thought to be

last) pre-tape-out bugs simply because there are

no other techniques that can handle these large

designs and fit into existing design methodolo-

gies seamlessly.

With the introduction of ternary value X, it

has been possible to simulate larger designs

with fewer simulation vectors, resulting in fewer

simulation runs. Ternary valued logic simula-

tors use X as an unknown digital value in addi-

tion to the binary values 0 or 1. A ternary valued

simulator can verify circuit behavior for many

possible input and initial state combinations. If

a simulation of a vector containing Xs yields 0

or 1 on a node in the circuit, it is guaranteed

that the value on the node will not change if the

Xs in the vector were replaced by any combi-

nation of 0’s and 1’s. Bryant proved the cor-

rectness of a static RAM design by logic

simulation using ternary values.4 For perfor-

mance reasons, most ternary simulators are pes-

simistic and will produce an X even though it

can be proved that the circuit produces a 0 or

a 1 in all cases. As a result, a ternary logic veri-

fier can produce many false-negatives, and the

debug and re-runs can be quite time-consum-

ing. However, this does not compromise the

rigor of the verification.

Formal techniques
Formal validation establishes a mathemati-

cal relation between two different representa-

tions of a system. The nature of this

mathematical relation varies according to the

kind of validation approach. Formal tech-

Validating Microprocessor Memories

62 IEEE Design & Test of Computers

niques, when they are applicable, can establish

universal properties about the design indepen-

dent of any particular set of inputs.

Model checking is a verification technique

in which properties are expressed in a tempo-

ral logic, and the design is modeled as a state-

transition system.5 A design is verified against

such a temporal logic specification by proving

that the design is a model of the specification

formula. The temporal logic specification

describes the ordering of events in time with-

out introducing time explicitly.

This approach has a few drawbacks. Most

realistic systems are still too large to be model

checked. This is primarily due to the size of the

transition relations that need to be built.

Moreover, for certain classes of circuits (as

shown later) an erroneous transition relation

would be built. To avoid this, the model check-

er would have to work with an extracted state

transition system whose transitions occur

according to the timing of the underlying

switch-level model, resulting in an explosion in

the number of states.

Theorem proving is a technique that works

within a framework of logic, with axioms repre-

senting known truths about the behavior of hard-

ware and theorems representing newly inferred

properties of the system’s behavior.6 To be

amenable to mathematical proof, both the spec-

ification of the system and the model of its actu-

al behavior need to be stated mathematically.

Certain formal procedures in a specific deduc-

tive system are then used to operate on the sym-

bolic statements. The main disadvantage of

theorem proving is that complete automation is

extremely hard and it may be necessary to guide

the prover through a series of lemmas. Current

hardware description languages such as Verilog

do not have formalized semantics and rely on

the user to embed their semantics in the proof-

system’s logic. It is not clear whether such proof

systems can fit smoothly into existing method-

ologies for custom memory validation.

Language containment and trace algebra

techniques are based on inclusion relations

between sets of traces or sets of strings, where

these are used to model system behavior. These

techniques have primarily been applied to RTL

and higher level behavioral models of designs,

but have had limited success with transistor-

level circuits. Another approach is forming the

product machine between the specification

and the implementation, and then searching

the state space for reachable states at which the

outputs differ. Here, the equivalence criterion

is input-output behavior with each machine

starting in a known state. As a result of the state

explosion of the resulting product state

machine graph, this technique can only be

used on relatively small designs.

Boolean equivalence checking tools are used

routinely to verify equivalence between RTL,

gate-, and switch-level models of standard library

cells and custom-designed circuits. These tools

operate by extracting a Boolean function, rep-

resenting cones of logic from these descriptions

(which are at different levels of abstraction) and

then comparing their stable outputs. Singh et al.

have done equivalence checking by extracting

RTL models from transistor netlists and then

doing the comparison.7 They require information

about the clocking scheme and rely on manip-

ulating the simulation relation obtained to derive

the stable behavior of the circuit. However, cur-

rent Boolean function extraction techniques

using functional composition to extract logic

functions, or techniques that try to derive the sta-

ble behavior, will not suffice for a certain class

of self-timed custom circuits.

Symbolic Simulation
Symbolic simulation combines traditional

simulation with formal symbolic manipulation.8,9

Each symbolic value represents a signal value

for different operating conditions, parameterized

in terms of a set of symbolic Boolean variables.

By this encoding, a single symbolic simulation

run can cover many conditions that would

require multiple runs of a traditional simulator.

Researchers at IBM first introduced symbolic

simulation to reason about properties of circuits

described at the RTL.10,11 Their approach drew on

techniques developed for reasoning about soft-

ware by symbolic execution. Darringer showed

how to apply symbolic execution to combina-

tional logic verification, by building a gate-level

simulator and then simplifying the equations it

implemented.11 The D-algorithm for test genera-

tion is a different form of symbolic simulation

63October–December 2000

where the functions of the basic logic gates are

extended to operate over a larger value domain

0, 1, D, D , and X.

The success of this early work was limited by

the weakness of the symbolic manipulation

methods. With the advent of BDDs, the tech-

nique became much more practical.12

Providing a canonical representation for

Boolean functions, BDDs enabled the imple-

mentation of an efficient event-driven logic sim-

ulator that operated over a symbolic domain.

By encoding a model’s finite domain using a

Boolean encoding, it is possible to symbolical-

ly simulate the model using BDDs. Bryant’s for-

mal state transition model for a ternary system

and his work in the area of switch-level and

memory symbolic simulation, and Seger’s work

on symbolic trajectory evaluation renewed fur-

ther interest in symbolic execution.4,9,13,14

Symbolic Trajectory Evaluation. Symbolic tra-

jectory evaluation (STE) is a modified form of

symbolic simulation that operates over the qua-

ternary logic domain 0, 1, X, and �.13,14 A state

of the circuit is defined as the set of all node val-

ues at a particular time instant. The value

domain is partially

ordered and forms a

complete lattice,

X � 0 indicates X has

less information than

0, or X is weaker than

0. 0 is neither weaker

nor stronger than 1

since their informa-

tion contents are

incomparable. If r � q

and r� t, we can think

of r as representing

both q and t. Any

property that holds for

a state such as r will

also hold for all states

above it in the lattice,

for example q and t.

STE differs from

symbolic simulation

in that it provides a

mathematically rigor-

ous method for estab-

lishing that properties of the form antecedent

(A) ⇒ consequent (C) hold for a given simula-

tion model of a circuit. Circuit state holders are

initialized with symbolic values specified by the

antecedent. The model is then simulated, typi-

cally for one or two clock cycles, while driving

the inputs with symbolic values during simula-

tion. The resulting values appearing on select-

ed internal nodes and primary outputs are

compared with the expected values expressed

in the consequent. In the more general case,

the values could be functions over a finite set

of variables. A trajectory is a sequence of states

such that each state has at least as much infor-

mation as the next-state function applied to the

previous state. Intuitively, a trajectory is a state

sequence constrained by the system’s next-state

function.

Consider an antecedent for an inverter stat-

ed as node A is 0 from 0 to 1, is 1 from 1 to 2,

and is 0 from 3 to 4. Valid trajectories for the

antecedent are the first and second state

sequences shown in Figure 1. The third state

sequence is an invalid trajectory. The value on

node B is 1 instead of the correct value 0.

A successful simulation of A ⇒ C establish-

Validating Microprocessor Memories

64 IEEE Design & Test of Computers

A

PI

B

t = 2 t = 3 t = 4

t = 1t = 0 t = 2 t = 3 t = 4

t = 0 t = 1

t = 1 t = 2t = 0 t = 4t = 3
State of the inverter is
a tuple of A, B values <A,B>

A : 0 1 X 0

B : X 1 0 X

Valid inverter trajectory

A : 0 1 X 0

B : X 1 0 0

A : 0 1 X 0

B : X 1 1 X

.

.

.

Invalid inverter trajectory

Valid inverter trajectory <0,X> <1,1> <X,0> <0,X>.

<0,X> <1,1> <X,0> <0,0>.

<0,X> <1,1> <X,1> <0,X>.

Invalid state in the sequence

Figure 1. Valid and invalid inverter trajectories.

es that any sequence of assign-

ments of values to circuit nodes

that is both consistent with the cir-

cuit behavior and consistent with

antecedent A is also consistent

with consequent C. For example,

consider a specification for an

inverter. An assertion that could be

checked on an implementation for

an inverter is “If node A is 0 from 0

to 1, then B is 1 from 1 to 2.” If the

implementation is correct, then

the weakest antecedent trajectory

that the circuit goes through is that

shown in Figure 2. The trajectory

that the circuit goes through is at

least as strong as the weakest

sequence satisfying the conse-

quent, and the assertion holds. If

the implementation is incorrect

and a buffer is implemented

instead of an inverter, the weakest

antecedent trajectory that the cir-

cuit goes through is that shown in

Figure 3. The trajectory that the cir-

cuit goes through is not at least as

strong as the consequent’s weak-

est state sequence, and the asser-

tion fails.14

Benefits of symbolic simulation
Symbolic simulation has

proved to be a practical and viable

technique for validating behav-

ioral, RTL, and switch-level mod-

els.1,2,8-11,13-17 It combines switch-level accuracy

with formalized reasoning to infer properties

about the system.

The two main advantages of symbolic tra-

jectory evaluation are that no monolithic tran-

sition relation of the design is built, and the

symbolic simulation engine is sensitive to the

dynamic behavior of the circuit. In most realis-

tic designs, the transition relations required for

other formal verification techniques such as

model checking or language containment can-

not be built. This is due to the large number of

state-holding elements. By keeping time explic-

it and the temporal logic simple, the logic is less

expressive but is more intuitive to phrase prop-

erties to be checked and debugged on the

schematic. At any point during the symbolic

simulation, only the present state and the pre-

vious state are kept in memory.

From an economic perspective, validation

and analysis using symbolic simulation can fit

neatly into existing design and validation

methodologies. The potential benefits of

improved product quality (fewer errors),

reduced time to market, and lower validation

costs (fewer highly skilled people) seem to war-

rant further investment and effort in this area.

Whereas other approaches discussed earlier do

not meet all three criteria, we hope symbolic

simulation will fulfill the three metrics.

65October–December 2000

t = 1 t = 2 t = 3t = 0A B
Implementation

Assertion: (A is 0 from 0 to 1) ⇒ (B is 1 from 1 to 2)

<X,X>

<X,X>

<0,X> <X,X><X,X>

<X,1><0,X>

.

.<X,X>

<X,X>

<X,X><X,X> <X,1>

Weakest sequence satisfying antecedent

Weakest antecedent trajectory

Weakest sequence satisfying consequent

Does assertion hold? Yes, because antecedent trajectory is at least as strong
as the consequent state sequence

Figure 2. Trajectory for correct implementation.

t = 1 t = 2 t = 3t = 0

Assertion: (A is 0 from 0 to 1) ⇒ (B is 1 from 1 to 2)

Weakest sequence satisfying antecedent

Weakest antecedent trajectory

Weakest sequence satisfying consequent

as the consequent state sequence

A B
Implementation

Does assertion hold? No, because antecedent trajectory is not at least as strong

(for t = 1 to 2)

<0,X> <X,X> <X,X> <X,X>

<0,X> <X,0> <X,X> <X,X>

<X,X> <X,1> <X,X> <X,X>

<X,1> <X,0>

.

.

.

Figure 3. Trajectory for incorrect implementation.

We have two main technical objectives for

symbolic simulation. First, we are interested in

finding bugs and analyzing circuit-related prob-

lems such as races and glitches. Assuming a

potential cost for each bug, it is easy to see the

payoff for symbolic simulation. Secondly, we

want to prove that the specification has been

realized correctly. In cases where the RTL or

behavioral model is annotated with timing

(such as in event-driven simulation), proving

correctness of implementation using symbolic

simulation is easier than using other tech-

niques. Symbolic simulation can benefit direct-

ly from the enhancements to the switch-level

models and can utilize better delay models. In

this work, we show that a symbolic simulation

methodology can address both the economic

and technical concerns mentioned earlier.

Do we have to simulate?
Designers are relying more and more on

pulsed clocks and are incorporating self-timed

circuit structures in their designs. Static analy-

sis of such designs is no longer adequate.

Self-timed implementations
Figure 4 shows one bit cell of a custom mem-

ory and its associated read and write control

logic. The memory has a number of carefully

designed timing chains that ensure the correct

temporal relationships between precharge, iso-

late, sense-amp enable, word-line assertion, and

write enable operations. To simplify the pre-

sentation, each gate in the control logic is

assumed to have a unit delay. The numbers on

the inverters and buffers indicate the number of

unit delays of the inverter buffer chain in that

Validating Microprocessor Memories

66 IEEE Design & Test of Computers

C2

C2

C1

S
en

se
 li

ne

4

C2
9

9

4 12 VDD

14

4 unit delays

decoded address

VDD

VDD

 8

VDD

9 unit delays

C1

VDD

B
itl

in
e

C1

din and din_b from L1 latch
dout latched in a L1 latch

VDD

Write enable from L1 latch
Read enable from L2 latch

Data Data_b

Bitcell

Read enable

Write enable

blb

dout

wl

din_bdin

iso

bl_pchg_b

sa pchg_b

wen

saen

bl

Figure 4. Read/write control logic for a bit cell.

path. The read and

write timing diagram

for these signals is

shown in Figure 5. For

the purpose of illus-

trating the control sig-

nal sequence, the

timing diagram takes

into account only the

delays introduced by

the inverters and

buffers.15

A static Boolean

equivalence checker

will not be able to ver-

ify such a circuit. For

example, in Figure 4,

the extracted static

Boolean function of

the logic cone feeding

the wen signal of the

write pass transistors

is 0 even though the

circuits write opera-

tion functions correct-

ly. Static analysis of

the bit cell node data

generates a model

that cannot be written

to. Current Boolean

equivalence-checking

tools cannot work

with such self-timed

custom implementa-

tions. Being sensitive

to the dynamic behav-

ior of the circuits,

symbolic simulation allows the validation of

such self-timed and edge-triggered circuits.

Why accurate event orders are important
Consider the dynamic logic circuit and its

RTL specification, shown in Figure 6. The cir-

cuit computes function CLK & A & B. Assume

that the primary inputs are fed by dynamic

logic that is precharged using CLK. Primary

input A is precharged to 0, while B is

precharged to 1. The primary input B is

precharged to 1 to enable a faster rise time at

the output during evaluation. A static Boolean

equivalence-checking

tool would verify that

the dynamic circuit

implements the RTL

specification.

Now consider

delay values for the

primary inputs, as

shown in Table 1. Our

symbolic simulation

tool will verify that the

circuit implements

the RTL specification,

67October–December 2000

C1

C2

Write enable

Read enable

din

dout

TIME

bl_pchg_b

sa_pchg_b

wl

saen

iso

wen

Data

(L1 LATCH)

(L1 LATCH)

(L2 LATCH)

A

D

D_NEW

_OLD D_NEW

D_OLD

pchg

8

14

4

12

9

(Bitcell)

Figure 5. Read and write control sequence.

Figure 6. Dynamic logic circuit.

Table 1. Rise and fall delays for AND dynamic logic.

Primary input Rise delay Fall delay

A 5 2

B 4 4

RTL specification

A

B

O
CLK

SCH implementation

module dyn_and (CLK, A, B, O);
 assign O = CLK & A & B
endmodule;

as depicted in Figure 7. Consider a different set

of delays, as shown in Table 2. The rise delay

for A is now faster at 4 units, and the fall delay

is slower for B at 5 units. Although the change

in delays is a single unit, the dynamic circuit no

longer implements the RTL specification, and

the verification fails.

The symbolic simulation tool will now pro-

duce the waveforms shown in Figure 8.

Consider the circuit in Figure 6 instantiated in a

larger design, as shown in Figure 9. The Boolean

function computed at the outputs driven by O

is actually dependent on the delays at internal

nets A and B. Using a static Boolean equiva-

lence checker is akin to validating the design

using zero-delay simulation. This could result in

a false positive since there could be real event

orders that were not considered during the ver-

ification. By symbolically simulating the circuit

with delays, we prove that the circuit imple-

ments the specification under a set of specified

delays. This enables a more accurate verifica-

tion and allows the designer to analyze the cir-

cuit for different event orders. Most design

methodologies will have circuit design rules to

ensure that such circuits with races are not

designed. However, there will be circum-

stances where violation of those rules is war-

ranted. Any validation technique must be

capable of addressing these concerns.

Validation Using Symbolic
Simulation

Our validation involves two different repre-

sentations, the specification and the imple-

mentation, of the real system to be built. The

specification is at the RTL. It is a finite-state

cycle-accurate description of the required

behavior of the circuit. The model is evaluated

either once or twice every clock cycle.

Typically, the RTL is written in a hardware

description language such as Verilog.

The implementation is a netlist of transistors

that is custom built. A switch-level simulation

model is extracted from the transistor netlist.18

Many important detailed effects arising from cir-

Validating Microprocessor Memories

68 IEEE Design & Test of Computers

Table 2. Modified rise and fall delays for AND

dynamic logic.

Primary input Rise delay Fall delay

A 4 2

B 4 5

CLK
4

A

a &b

a, b ⇒ Boolean
variables

5

2

4

B

a

b

O

CLK
4

A

a

a, b ⇒ Boolean
variables

5

2

4

B

a

b

O

Wrong function generated

Figure 8. Timing diagram for modified rise/fall delays.

RTL specification

A O

B

CLK

P
Q

R
S

Downstream
logic

module (CLK, P, Q, R, S,);
 assign O = CLK ? P & Q & (~R I ~S) : 1'b0 '
 …
 …
end modules;

Figure 9. Dynamic logic instantiated in a combinational circuit.

Figure 7. Timing diagram for user-specified rise/fall delays.

cuit structures such as ratioed and precharged

logic, bidirectional pass transistors, and stored

charge are accurately modeled. Node voltages

are represented using the STE quaternary val-

ued logic. The switch-level simulation model

supports different rise and fall delay timing

models and evaluates multiple times during a

single clock cycle.

Illustration of an STE validation
For illustration, we present an example of an

RTL compared with schematic validation using

symbolic simulation for a simple design.

Consider the RTL design shown in Figure 10.

The RTL represents a two-phase clocked design

that is to be custom built. The design models an

AND gate driven by two slave latches A.L2 and

B.L2 and whose output is latched in third mas-

ter latch C.L1. With this RTL as a specification, a

custom schematic of the RTL design is built, as

shown in Figure 11. For example, the A.L1 mas-

ter latch in the RTL corresponds to the D.L1

master latch in the schematic.

A typical schematic implementation of a

master-slave latch pair is shown in Figure 12.

The master latch consists of internal state-hold-

ing node L1 SN, data input DIN, clock input C1,

and data output L1 OUT. To verify such a latch in

STE, we set up antecedent A and consequent

C, as illustrated in Figure 13 (next page), and

then use STE to prove A ⇒ C. The gray-shaded

portions represent places where no assumption

is being made in the antecedent or no check is

being performed in the consequent. A similar

assertion would be run for the slave latch to ver-

ify the complete master-slave pair. This verifi-

cation has only proved that the latches are

correct with respect to the informal property we

69October–December 2000

RTL model

reg A.L1, A.L2, B.L1, B.L2, C.L1, C.L2;

output Cout;

assign Cout = C.L2

assign and_out = A.L2 & B.L2;

 A.L1 = Ain; B.L1 = Bin; C.L1 = and_out;

wire and_out;

module (C1, C2, Ain, Bin, Cout);
input Ain, Bin, C1, C2;

 if (C1)

 A.L2 = A.L1; B.L2 = B.L1; C.L2 = C.L1;
 if (C2)

always @(C1 or Ain or Bin or and_out)

always @(C2 or A.L1 or B.L1 or C.L1)

Figure 10. RTL design representations.

L1

L2
C1

C2

F

Fl2out

y

RTL model

L1

L2

L1

L2

C1

C2

C1

C2

Custom-built schemetic implementation

Din

Ein

Dl2out

El2out

E

D
VDD

GND

Figure 11. Custom schematic representation of design.

L1out

C
om

bi
na

tio
na

l l
og

ic
,

la
tc

he
s,

 a
rr

ay
 s

en
se

am
p

ou
tp

ut
s

C
om

bi
na

tio
na

l l
og

ic
,

la
tc

he
s,

 a
rr

ay
 in

pu
ts

C1

C2

Din

L2out

L1 SN L2 SN

Figure 12. A master-slave latch.

have specified for a latch. We have not yet

proved that schematic latch pair D behaves as

predicted by the RTL. To achieve this, we

derive the properties from the RTL automati-

cally. For example, the antecedent and conse-

quent for the schematic latch D.L2 are derived

from corresponding RTL latch A.L2. This asser-

tion is then mapped onto the schematic and

given to the symbolic trajectory evaluator.

Does the schematic realize the RTL
specification?

The design is first partitioned into a set of

checkpoints. These checkpoints are nodes,

such as latches and primary outputs, in the RTL

about which properties can be stated and

where states can be compared. The RTL

encodes a set of next-state functions for the

checkpoints in the design. These functions are

captured as STE assertions that are then

checked to hold on the schematic.

In Figure 10, the checkpoints are the storage

nodes A.L1, A.L2, B.L1, B.L2, C.L1, C.L2, and the

primary output Cout. Each checkpoint has its

own assertion. For example, the next-state func-

tion, in terms of RTL node names, for latch C.L1

automatically derived from the RTL model is as

follows:

C.L1 =(C1&(A.L2&B.L2))V(C1&C.L1)

This function forms the value part of the con-

sequent for the assertion associated with it. The

antecedent for the C.L1 assertion would involve

driving inputs C1 and C2, and the checkpoints

A.L2 and B.L2 with symbolic variables c1, c2, a,

and b respectively. Having obtained the asser-

tion for C.L1, we now have to verify that it holds

on the schematic shown in Figure 11. The RTL

assertion is mapped to a schematic assertion by

mapping nodes and values in the RTL domain

to nodes and waveforms in the schematic

domain. The C.L1 latch RTL assertion is

mapped into a schematic assertion, as shown

in Figure 14. The schematic mapped assertion

for the C.L1 latch involves

1. Identifying a F.L1SN corresponding check-

point in the schematic where states can be

compared.

2. Defining the timing window (t7, t8)for the

consequent check of the C.L1 latch next-

state function. This time window is also

used in the antecedent when logic down-

stream of the C.L1 latch is checked.

The D.L2OUT, E.L2OUT and F.L1SN

latch nodes are initialized with

independent variables a, b and c

respectively, precisely at the time

there is a stable feedback loop

established in the latches after the

corresponding clock goes to 0. The

L2 latches in the schematic are ini-

tialized from t4 to t5 when the C2

clock is 0. The F.L1 latch is

checked precisely one clock cycle

after the time it was set up. The tim-

ing windows are defined by con-

sidering the setup and hold times

of the latches.

Assertions are mapped for all

checkpoints in the design. The

schematic in Figure 11 is a correct

implementation of the RTL in

Figure 10 with respect to that map-

ping only if the conjunction of all

the checkpoint assertions is satis-

Validating Microprocessor Memories

70 IEEE Design & Test of Computers

L1SN

C2

Din

L1SN

L1out

c2a

c1b

c2b

X X

X

X X

X

X

a

b

c ? b : a

c ? b : a

t2 + cycle_length

t4-t_setup+t_latch_delay

Time

A
nt

ec
ed

en
t

C
on

se
qu

en
t

cC1

t0 t1 t2 t3 t4-t_setup t4 t4+ t_hold t1+ cycle_length

Figure 13. Latch verification using symbolic simulation.

fied by the schematic.

The design decompo-

sition into check-

points and the

definition of the map-

ping functions are

carefully done so that

the final verification

result can be estab-

lished by composing

the results of the indi-

vidual checkpoint

assertions.

Validation
Methodology for
Custom
Memories

All custom memo-

ries on the latest

PowerPC micro-

processor were vali-

dated using STE. A

typical custom memo-

ry consists of an array

of bit cell storage

nodes, as shown in Figure 15. The verification

methodology, as shown in the later Figure 16,

involves the first step of partitioning the design

into checkpoints and then state mapping

between the RTL and the schematic. In cases

where the state machine encoding differed

between the RTL and the schematic, the exact

relationship between the nodes in the RTL and

schematic was identified and specified. Next,

the switch-level model is augmented with delay

information, with the resulting event ordering

between critical signals being consistent with

Spice (simulation program with integrated cir-

cuit emphasis) simulations. The RTL model is

then analyzed to obtain the assertions.

While verifying checkpoints other than the

array bit cells, a schematic model without the

array core is created. This reduces model load

and debug times for assertion failures. Once all

the primary outputs and latches pass, the array

core is verified. Initial runs are done on a

schematic model with only a few numbers of

bit cells. Typically, a row or column of bit cells

is selected. Once they pass, they are run on the

full-size array. In cases, where assertions could

not be run on the full-size array due to BDD

blow-up, different size models were created

and then verified using an orthogonal set of

assertions. For more details on each of these

steps, see Krishnamurthy et al.16

Completed Work and Results
Most earlier work focused on using STE to

verify equivalence by proving that functional

properties held on both the RTL and schemat-

ic.1,2 These approaches relied on the user’s

knowledge of the RTL to come up with a com-

plete set of assertions. However, bugs related

to nonfunctional modes of operation such as

debug and scan can be missed by such meth-

ods. The incorrect operation of these non-

functional modes has a serious impact on the

debug and test capability of these chips, there-

by affecting profitability. We proposed a tech-

nique to generate the assertions from the RTL

model automatically.17 The automatically gen-

erated assertion set completely characterizes

the RTL. The transistor schematic is then

71October–December 2000

t6+t3-t0 t1 t2 t4 t5 t8 t9

t3 t6 t7

S
ym

bo
lic

si
m

ul
at

io
n

A
nt

ec
ed

en
t

C
on

se
qu

en
t

Check for
[c1 & (a & b) | (~c1 & c)]

a

b

c1

X X

X X

XX

X

X

X

X

XX

c

c

a

b

XX

X

X X

X

[c1 & (a & b) | (~c1 & c)]

F.L1SN

D.L2out

E.L2out

F.L1SN

D.L2out

E.L2out

F.L1SN

C2

C1

Figure 14. Antecedent and consequent pair for schematic.

checked to see if it satisfies this assertion set.

By focusing on all modes of operation, our

methodology is more rigorous and closer to

equivalence checking than any of the earlier

approaches.

Previous authors have attributed complex

timing, multiple clock phases, complex sequen-

tial control logic, and the large number of state-

holding elements (state explosion) as their rea-

son for using a simulation-based methodology

for equivalence checking custom memories.1,2,17

While these reasons are valid, the fundamental

reason for using a simulation-based approach

for custom memories is the prevalence of a cer-

tain class of custom-designed self-timed logic

structures for which no Boolean function can

be extracted using existing techniques.

We also showed why accurate event orders

are necessary for validation, giving an exam-

ple of how symbolic simulation has the added

benefit of uncovering potential races. Since it

is sensitive to the dynamic behavior of the cir-

cuit under analysis, STE can verify such circuits

that are prevalent in high-performance custom

memory designs.

Results
Every custom array schematic in the latest

PowerPC microprocessor designed at the Som-

erset PowerPC Design Center (Motorola, Austin,

Texas) was validated with respect to its RTL spec-

ification using our methodology.

Table 3 lists some of the arrays that were ver-

ified. The control logic transistors are all the

Validating Microprocessor Memories

72 IEEE Design & Test of Computers

Decoder
Column

Bitcell

Bitcell

Sense amp

Bitcell

Bitcell

Sense amp

S
el

ec
ts

 fr
om

co
lu

m
n

de
co

de
r

Feedback

m

1

n

1

A
dd

re
ss

(lo
g

n
+

 lo
g

m
)

log m

log n

coln

m rows X n columns

Bitcell
matrix

B
itl

in
e

Primary outputs

decoder

A
rr

ay
 c

on
tr

ol
 s

ig
na

ls
To

 c
ol

um
n

M
U

X
To

 w
or

d
lin

es
Row

Column address

col0 col1

Combined read and write port

Row address

B
itl

in
esCarefully timed

read and write
control logic and
data conditioning

Word line

W
L’s

 fr
om

 r
ow

 d
ec

od
er

Column mux

Primary Outputs

wl0

wl1

Bitcell

Din

Read enable

Write enable

C1 clock

Address

Data in

Read enable

Write enable

C1 clock

Data in

Read/write
control logic

Address
decode logic

Data
conditioning

logic

S
en

se
-a

m
p

ou
tp

ut
s

co
lu

m
n

M
U

X

Figure 15. Custom memory.

transistors in the array

that do not comprise

the bit cells and latch-

es. The runtimes,

measured on an IBM

RS 6000 590 AIX

machine with 512 M

bytes of memory, rep-

resent the time that it

takes for the assertion

set to pass successful-

ly on the schematic.

We can infer from

Table 3 that the com-

plexity of the control

logic is an important

factor influencing

assertion runtimes in

addition to the bit

cells and latches. For

example, array B

takes the same amount of time as array C even

though array C has fewer bitcells, latches, and

control logic transistors compared to array B.

Moreover, all the assertion runtimes are less

than a day. In contrast, random Verilog simu-

lation of these arrays would take anywhere

from weeks to months and be extremely diffi-

cult to quantify the coverage. From the per-

73October–December 2000

M
od

ify
 c

on
se

qu
en

t c
he

ck
 ti

m
in

g
w

in
do

w
s

C
he

ck
 d

el
ay

 a
nn

ot
at

io
n,

 c
he

ck
 n

od
e

m
ap

s
D

eb
ug

 fa
ls

e
ne

ga
tiv

es
 d

ue
 to

 X
s

D
riv

e
ad

di
tio

na
l n

od
es

 in
 s

ch
em

at
ic

Pass?

State-node mapping (can do different state encodings if exact
function between RTL and sch nodes can be specified)Timer mapping

State holders, array bitcells, P0s, P1s, cutpoints
array sense-amp outputs

Default: unit-delay
Nodes in rd/wr/self-timed logic annotated with delays if needed

Array core bitcell assertions
Run on reduced-size for shorter debug/run times
Run on full-size array
If blow-up occurs

Orthogonal dimensions identified such as rows, columns, ways, etc.
Assertions run for bitcells across these dimensions

A⇒ C extracted from RTL for all checkpoints
Array removal for latch/PO/cutpoints that do not depend on array.

No

Yes

Verification completed

Debug cycle

Design decomposition
into checkpoints

Identification of
state-holdiing nodes

Delay annotation
on the schematic

Autogeneration and
execution of assertions

Figure 16. Verification methodology.

Table 3. Arrays that were verified.

Array block Bit cells Latches Control logic transistors Assertions runtime (hrs)

A 73,728 1,346 69,000 11–12

B 24,576 1,612 87,500 15–16

C 3,968 357 31,000 15–16

D 24,576 935 44,000 16–17

E 131,072 330 177,500 19–20

F 88,704 445 39,500 12–13

G 50,688 706 156,000 11–12

H 71,680 276 60,000 15–16

I 21,824 1,192 27,000 2–3

J 1,024 0 8,950 1.5–2

K 4,096 0 7,900 5–6

L 8,512 0 8,800 5–6

M 256 0 4,500 6–7

N 512 0 1,250 1–2

O 2,096 0 32,400 1–2

P 4,192 0 6,050 4–5

spective of CPU usage and coverage, our tech-

nique is far better than conventional validation

methods for these arrays.

Table 4 presents the validation time and dis-

crepancies uncovered using our methodology.

Approximately, three person-years were spent

in the validation of over 20 custom arrays,

uncovering 66 discrepancies using this valida-

tion methodology. The validation time com-

prised methodology development, partial

implementation of the automatic assertion gen-

erator, manual state node and timer mapping,

assertion generation for bit cells and sense-amp

outputs, development of the verification sup-

port libraries, establishing the BDD variable

order, and debugging assertion failures. About

half the validation time was spent on debug-

ging assertion failures and getting the timer and

state node mapping right.

The array validation methodology discov-

ered many discrepancies between the RTL and

schematics and circuit-related problems. These

included incorrect clock regenerators feeding

the wrong sets of latches, control logic errors in

the array read and write enables, incorrect

modeling of sense-amp output precharge in the

RTL, incorrect hookup of the scan chain in the

schematic, and incorrect modeling of the pri-

mary outputs in the RTL when certain clocks

were deasserted. Many of these bugs would

manifest when switching between different

modes of operation during test, debug, power-

on-reset, and so on. These modes are essential

for testing and debugging the chip. Validation

techniques that only look at the functional

behavior will not find these errors. In addition

to logical discrepancies, a number of potential

circuit-related problems such as glitches and

races were identified and reported to the

designers.

WE HAVE ESTABLISHED a validation methodol-

ogy based on symbolic simulation. No differ-

entiation is made between functional and

nonfunctional modes of operation (such as

scan, POR, debug). The automatically generat-

ed assertions from the RTL model are superior

to manually generated assertions. By employ-

ing this methodology, we removed the burden

of generating these assertions from the verifi-

cation engineer and eliminated the quality vari-

ation of the assertions. We have shown that it is

essential to do equivalence checking between

the RTL and schematic models rather than only

verify functional properties. The focus of our

effort was on custom memories, primarily due

to the predominance of bugs in such circuits

and the failure of standard equivalence check-

ing tools to handle them. However, our

methodology is applicable to other circuit

classes as well.

We have also established why symbolic sim-

ulation models with accurate event orders are

required for validating certain classes of tran-

sistor circuits and why existing Boolean equiv-

alence tools cannot handle such circuits. To

achieve higher clock speeds, circuit designers

are using more self-timed structures and free-

running finite-state machines to implement

their logic. Methodologies based purely on sta-

tic analysis will fail to meet the needs of a

designer. Moreover, it is our experience that

symbolic simulation often exposes potential cir-

cuit-related problems, hazards, and other logic

functionality issues that would be completely

missed by combinational Boolean equivalence

checking.

Validating Microprocessor Memories

74 IEEE Design & Test of Computers

Table 4. Validation effort.

Validation time

Array block (person-months) Discrepancies

A 3 4

B 3 6

C 3 5

D 3 5

E 3 9

F 2 6

G 2 5

H 3 4

I 2 2

J 1 1

K 2 4

L 2 5

M 2 5

N 1 3

O 1 0

P 1 2

Despite our success with this methodology,

there were issues to overcome. For certain

arrays, we were not able to symbolically simu-

late the full-size array due to the blow up of the

BDDs. In such cases, we worked on reduced

models of the array and relied on our knowl-

edge of the schematic to validate them. For

example, full-size arrays A and E were never

verified. Nonetheless, based on the verification

of our reduced-size schematic models, we are

confident that no bug has escaped our

methodology.

The entire verification is based on a specif-

ic assumption about the order of events that

occur in the control logic. If the real delays in

silicon contribute to different event orders

contradicting our assumptions, then a false

positive could occur. Our methodology

attempts to minimize such false positives by

deriving these event orders from Spice simu-

lations of the control logic. We plan to

research deriving more accurate delay mod-

els for switch-level simulation.

The transistors in the sense amplifiers were

simulated by automatically generating simu-

lation models that treated them as unidirec-

tional. Although, the assertion runtimes are

reasonable, the human effort involved in

establishing the mapping functions is time-

consuming. An incorrect mapping function

results in a debugging fix cycle that can be

quite long, although false positives cannot

occur.

Since custom memories and their associat-

ed custom logic constitute a large percentage

of the chip area (approximately 70 to 80%),

equivalence between RTL and transistor

schematic models must be established. We

have shown that our verification methodology

comes closer to equivalence checking than

previous approaches. Exposing shortcomings

of our approach will enable us to plug any

loopholes this methodology may have.

Symbolic simulation is a viable and practical

technique for validation and analysis of custom

designs, and can fit neatly into existing method-

ologies. It is capable of working with models at

different levels of abstraction. This technology

promises to be an exciting field of work with

many areas of application. ■

Acknowledgments
We thank the entire project and tools teams

at Somerset, Motorola, for their cooperation and

commitment to the successful conclusion of this

project.

References
1. N. Ganguly, M. Abadir, and M. Pandey, “PowerPC

Array Verification Methodology using Formal

Techniques,” In’l. Test Conf., Washington, D.C.,

1996, pp. 857-864

2. M. Pandey et al., “Formal Verification of PowerPC

Arrays Using Symbolic Trajectory Evaluation,”

Proc. 33rd ACM/IEEE Design Automation Conf.,

June 1996, pp. 649-654.

3. T. Kam and P.A. Subrahmanyam, “Comparing

Layouts with HDL Models: A Formal Verification

Technique,” IEEE Trans. on Computer-Aided

Design, Apr. 1995, pp. 503-509.

4. R.E. Bryant, “Verifying a Static RAM Design by

Logic Simulation,’’ Proc. Fifth MIT Conf. on

Advanced Research in VLSI, 1988, pp. 335-349.

5. E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Auto-

matic Verification of Finite-State Concurrent Sys-

tems Using Temporal Logic Specifications,’’ ACM

Trans. on Programming Languages and Systems

Vol. 8, No. 2, 1986 pp. 244-263.

6. R.S. Boyer and J.S. Moore, “A Computational

Logic,” ACM Monograph Series. Academic Press,

New York, 1979.

7. K.J. Singh and P.A. Subrahmanyam “Extracting

RTL Models from Transistor Netlists,” IEEE/ACM

Int’l Conf. on Computer-Aided Design, Nov. 1995,

pp. 11-17.

8. D. L. Beatty, R.E. Bryant, and C.J.H. Seger, “Syn-

chronous Circuit Verification by Symbolic Simula-

tion: An Illustration,” Advanced Research in VLSI:

Proc. Sixth MIT Conf., MIT Press, Mar, 1990, pp.

98-112.

9. R.E. Bryant and C.-J.H. Seger “Formal Verification

of Digital Circuits Using Symbolic Ternary System

Models,’’ Computer-Aided Verification 1990, E.M.

Clarke, and R.P. Kurshan, eds., American Mathe-

matical Society, 1991, pp. 121-146.

10. W.C. Carter, W.H. Joyner Jr., and D.Brand, “Sym-

bolic Simulation for Correct Machine Design,’’

Proc.16th ACM/IEEE Design Automation Conf.,

1979, pp. 280-286.

11. J.A. Darringer “The Application of Program Verifi-

cation Techniques to Hardware Verification,”

75October–December 2000

Proc. 16th ACM IEEE Design Automation Conf.,

1979, pp. 375-381.

12. R.E. Bryant “Graph-Based Algorithms for Boolean

Function Manipulation,’’ IEEE Trans. Computers,

Vol. C-35, No. 8, August 1986, pp. 677-691.

13. C.-J.H. Seger “Voss—a formal hardware verifica-

tion system: user’s guide,” Technical Report 93-

45, Dept. of Computer Science, University of

British Columbia, 1993.

14. C.-J.H. Seger and R.E. Bryant, “Formal

Verification by Symbolic Evaluation of Partially

Ordered Trajectories,” Formal Methods in System

Design, vol. 6, 1995, pp. 147-189.

15. N. Krishnamurthy et al., “Equivalence Checking for

PowerPC Custom Memories using Symbolic Tra-

jectory Evaluation,” Proc. IEEE Int’l Workshop on

Microprocessor Test and Verification, (MTV99),

1999, pp.1-20.

16. N. Krishnamurthy et al., “Validation of PowerPC

Custom Memories Using Symbolic Simulation,”

Proc.18th IEEE VLSI Test Symp., Apr. 2000,

pp. 9-14.

17. L.-C. Wang, M. Abadir, and N. Krishnamurthy,

“Automatic Generation of Assertions for Formal

Verification of PowerPC Microprocessor Arrays

Using Symbolic Trajectory Evaluation,” Proc. 35th

Design Automation Conf., 1998.

18. R. E.Bryant, “Boolean Analysis of MOS Circuits,”

IEEE Trans. CAD of Integrated Circuits, CAD vol.

6, no. 4, July 1987.

N a r a y a n a n
Krishnamurthy received a
BTech in instrumentation
engineering from the Indian
Institute of Technology and a
MS in electrical and comput-

er engineering from the University of Texas at
Austin, where he is currently pursuing a PhD. He
is a CAD tools engineer in the ASP Advanced
Tools and Methodologies Group at the Somerset
PowerPC Design Center, Motorola, in Austin,
Texas. His research interests include VLSI and
dependable systems design, formal verification
techniques and software engineering and testing.

Andrew K. Martin
received his BSc in comput-
ing and information science
from Queen’s University at
Kingston and his MSc and
PhD in computer science

from the University of British Columbia. Martin is
a principal staff scientist for Motorola,
Semiconductor Products Sector, Architecture
and Systems Platforms Division in Austin, Texas.
He is a member of the IEEE.

Magdy S. Abadir received
his BS degree from the
University of Alexandria and
his MS degree from the
University of Saskatchewan,
both in computer science,

and a PhD in electrical engineering from the
University of Southern California. He works at
Motorola as the test and verification manager in
the Tools and Methodology Group at the
Somerset PowerPC Design Center in Austin,
Texas. He has published over eighty articles, as
well as three books in his field of interest. He is a
senior member of IEEE.

Jacob A. Abraham is a
professor in the Departments
of Computer Sciences and
Electrical and Computer
Engineering at the University
of Texas at Austin. He

received a BS degree in electrical engineering
from the University of Kerala. He received both
his MS and PhD from Stanford University in elec-
trical engineering and computer science.
Abraham’s research interests are in VLSI design
and test, formal verification, and fault-tolerant
computing. He is a fellow of the IEEE.

For questions regarding this article, please
contact Narayanan Krishnamurthy, e-mail
narayanan.krishnamurthy@motorola.com.

Validating Microprocessor Memories

76 IEEE Design & Test of Computers

