Introduction to multi-level logic synthesis (automatic factoring)

Lecture 2

Optimization

- Combinational optimization
 - 2-level
 - Multi-level
- Sequential optimization
Two-Level Representation
- Applicable in only special situations
- Serve as the basis for multi-level optimization

Multi-Level Circuit
- More realistic view in most cases
Representation

• In order to develop a method for multi-level logic optimization, we need a representation for the algorithm to work on
 - Representation of a circuit to optimize
 - Independent of technology (65nm vs. 28nm, etc.)
 - Result of optimization can be evaluated effectively

• Two (circuit) representations
 - Network representation (network graph)
 - Boolean function representation
 • Factored Forms
 • OBDD (Ordered Binary Decision Diagram)

Representation Example

- A circuit is represented as a graph
- Each node is represented as a 2-level SOP
Example of Optimization – Node Elimination

Example of Optimization – Factoring
Example of Optimization – 2-level Minimization

- We see a SOP as a set of cubes
 - $ab + bc + ef = \{ab, bc, ef\}$

- We see a cube as a set of literals
 - $abc = \{a, b, c\}$

- For example
 - $F = ac + bc + ad$
 - F contains 3 cubes $\{c1, c2, c3\}$
 - Where $c1 = \{a, c\}$, $c2 = \{b, c\}$, $c3 = \{a, d\}$
Assumption

• In 2-level logic synthesis, we assume that our final implementation is the same as how the function is represented
 - Literals are inputs
 - Use multi-input AND and 1 big OR
 - So, minimizing formula = minimizing implementation

• In multi-level logic synthesis, we assume that a node can be an arbitrary function
 - In one way, we may try to minimize the total number of "literals" used in the network
 - We do not consider what are available in the cell library
 - This allows us to develop a general theory here

In general, optimization is
But here, we only look for

- An efficient way to transform one representation into another
 - So that the cost (e.g. the # of literals used in the circuit) can be evaluated efficiently
 - So that we can apply local search to find the near-optimal solution
 - See 156A Lecture 8 for “local search”

- You can also look into here for more information
 - http://www.ece.cmu.edu/~ee760/760docs/lec07.pdf
 - Where it teaches you how to use SIS

- And this efficient way is “Factoring”

Factored Form

\[
\begin{align*}
& a \\
& a' \\
& ab'c \\
& ab + c'd \\
& (a + b)(c + a' + de) + f
\end{align*}
\]

- Where \(a, a', b', c\), are called literals
- Factored form can be derived from a SOP

\[
ace + ade + bce + bde + e'
\]

\[
\rightarrow e(a + b)(c + d) + e'.
\]
Definition

- A factored form is
 - A product or a sum, where
 - A product is
 - Either a single literal
 - Or a product of factored form
 - A sum is
 - either a single literal
 - Or a sum of factored form

\[
\begin{align*}
 a + b'c & \quad \text{Yes} \\
 ((a' + b)cd + e)(a + b') + e' & \quad \text{No}
\end{align*}
\]

Note:
- literal count \propto transistor count \propto area
- (however, area also depends on wiring)
Algebraic and Boolean

- $F = \{Ci\}$ is called an algebraic expression if in F, no cube contain another and no cube contains the form xx or xx'
 - Otherwise, it is called Boolean expression (or absorptive)
 - For examples
 - $a+bc$ is algebraic
 - $a+ab$ is Boolean
- The support of F, denoted as $\text{supp}(F)$ is the set of variables used in F
 - Two expressions F,G are called orthogonal if they have disjoint supports (denoted as $F \perp G$)
 - For examples
 - “$ab+c$” \perp “$d'e+f$”
 - “$ab+c$” and “$c'+de$” are not orthogonal

Factored form is not unique

- There are 12 literals in the first form
- There is only 8 literals in the 3rd one
- Take the first one and multiply out, we can get the original expression
 - Without using $xx'=0$ and $xx=x$
- Take the 3rd one and multiply out, we get a different expression
 - Because we have $afag$
Algebraic factored form

- A factored form is said to be Algebraic if the SOP expression can be obtained by multiplying \(F \) out directly (without using \(xx' = 0 \) and \(xx = x \) and single cube containment)
 - Otherwise, it is called Boolean

\[
\begin{align*}
 a + bc & \quad (a + b + c + d)(a' + b' + e' + d') \\
 (a + b)(c + d) & \quad (af + b + c)(ag + d + e) \\
 (b + c)(d + e + ag) + (d + e + g)af, (a + b)(c + d)(e + f) + g + b(e + h).
\end{align*}
\]

Factoring tree

- A sub-tree is called a factor
 - \((a + b')\)
 - \(cd(a' + b)\)
- Two trees are equivalent if they represent the same function
- Two trees are syntactically equivalent if they are isomorphic
 - \((a + b)(c + d)e = (a + b)e(c + d)\)
Maximally factored

- A factored form is maximally factored if
 - For every sum of products, there are NO 2 syntactically equivalent factors in the products
 - For every product of sums, there are NO 2 syntactically equivalent factors in the sums

- Not maximally factored
 - \(ab + ac = a(b+c) \)
 - \((a+b)(a+c) \)
 - Note that "\(\cdot \)" distributes over "\(+ \)" and vice versa
 - \((a+b)(a+c) = a+bc \)

In order to Factor, we need "Division"

- Let \(f = x'z' + yz + xz \)
- Let \(p = x'+z \)
- We can have \(f = \)
 - \((x'+z)(x+z') + x'y = \)
 - \((x'+z)(y+z') + xz \)

- Where \((x+z') \) is called a quotient
- And \(x'y \) is called a remainder
Factor VS. divisor

• (factor = \(g \)) Let \(f \) and \(g \) are Boolean functions satisfying
 - \(f \subseteq g \)
 - \(f \) can be written as \(g \cdot h \) (\(h \) is not unique), where
 - \(f \subseteq h \subseteq f + g' \)
• (divisor = \(g \)) If \(f \cdot g \neq 0 \) (not containment as above), \(f \) can be written as \(f = g \cdot h + r \) (not unique)
 - Where \(f \cdot g' \subseteq r \subseteq f \)
 - For a given \(r \), \(h \) can be chosen so that
 • \(f \cdot r' \subseteq h \subseteq f + g' \)
• \(f \cdot g \) is an algebraic product if they have disjoint support sets
 - \((a+b)(c+d)\) is an algebraic product

Division

• Given \(F \) and \(P \), a division generates \(Q \) and \(R \)
 - Such that \(F = PQ + R \)
• If \(PQ \) is an algebraic product, this is an algebraic division
 - \(P \) is an algebraic factor
• We can perform weak division, such that
 - \(PQ \) is an algebraic product
 - \(R \) has as few cubes as possible
 - \(PQ + R \) and \(F \) have the same set of cubes
 - See textbook for the algorithm
Example

• $F = ad + abc + bcd$, $P = a+bc$

• (1) for “a”, look into F to collect all cubes that contains “a”
 - They are “ad” and “abc”
 - So we have $(p_1)d$ and $(p_1)bc$

• (2) for “bc”, we have “abc” and “bcd”
 - So we have “$(p_2)a$” and $(p_2)d$

• Observe that d multiply both (p_1) and (p_2)
 - So we get $(p_1+p_2)d + abc$
 - $= (a+bc)d + abc$

Kernel – to find good divisors

Definition 10.5.1 An expression is cube-free if no cube divides the expression evenly, that is,

$$\neg \exists C \text{ such that } F = QC$$

(no remainder), and C is a cube.

For instance, $ab + c$ is cube-free; $ab + ac$ and abc are not cube-free. A cube-free expression must have more than one cube.

Definition 10.5.2 The primary divisors of an algebraic expression F are the set of expressions

$$D(F) = \{ F/c | c \text{ is a cube} \}. \quad (10.5)$$

The kernels of an expression F are the set of expressions

$$K(F) = \{ g | g \in D(F) \text{ and } g \text{ is cube-free} \}. \quad (10.6)$$

In other words, the kernels of an expression F are the cube-free primary divisors of F.

“c” is called the co-kernel of K
Example

\[F = adf + aef + bdf + bef + cdf + cef + bfg + h \]
\[= (a + b + c)(d + e)f + bfg + h \]

<table>
<thead>
<tr>
<th>kernel</th>
<th>co-kernel</th>
<th>level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d + e)</td>
<td>(af, cf)</td>
<td>0</td>
</tr>
<tr>
<td>(d + e + g)</td>
<td>(bf)</td>
<td>0</td>
</tr>
<tr>
<td>(a + b + c)</td>
<td>(df, ef)</td>
<td>0</td>
</tr>
<tr>
<td>((a + b + c)(d + e) + bg)</td>
<td>(f)</td>
<td>1</td>
</tr>
<tr>
<td>(((a + b + c)(d + e) + bg)f + h)</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

F/a = df+ef is not a cube-free divisor
A kernel may have more than 1 co-kernel
If the original expression is cube free, a co-kernel can be the “1”

The usage of kernels

- The fundamental theorem is used to detect if two or more expressions have any common algebraic divisor than just the single cubes

- **Fundamental Theorem**
 - If two expressions F and G have the property that for any pair of kernels, \(K_F \) and \(K_G \), they have at most 1 term in common,
 - Then, F and G have no common non-trivial algebraic divisors other than just a single cube
In another words

- If F and G have a common *more-than-1-cube* divisor
 - You can find K_F and K_G, such that **intersections of these two kernels give an expression with more than just 1 cube**
 - And that expression is your common divisor

- $F = ae+be+cde+ab$, $G = ad+ae+bd+be+bc$
- $F/e = a+b+cd$, G/e or $G/d = a+b$
- $\{a,b,cd\} \cap \{a,b\} = \{a,b\}$
- $(a+b)$ is your common divisor for F and G

Remaining questions

- How to compute all kernels efficiently?
 - See book
- How to choose a particular divisor for factoring?
 - Apply heuristics
 - Very much like expansion/reduction iterations
- You can look into here for more information
 - http://www.ece.cmu.edu/~ee760/760docs/lec07.pdf
 - Where it teaches you how to use SIS
- You can download SIS and play with it
 - It has everything for you to understand the synthesis process