Synthesis of 2-level Logic

Exact and Heuristic Methods

Lecture 7: Branch & Bound

Two Approaches

e Exact
— Find all primes
e Find a complete sum
— Find a minimum cover (covering problem)

e Heuristic
— Take an initial cover of cubes
— Repeat
» Expand a cube
 Remove another cube
— Eliminate consensus terms

From Lecture 6

e We have learned how to compute
primes

e We have learned how to build constraint
matrix

 Now we are going to see how to solve
the minimum covering problem

Example

e Primes: wy’'z, wyz', wxy, wxz, X'y, X'z’
e f =Xy + wxy + Xyz' + wy'z

Wy’z, Wyz’, WXy, WXz, X'y’, X’z’

Xy’ 0 0] 0 0 1
WXy 0 0
xX’yz’ 0 0
wy’z 1 0]

0 O
0 O
0 O

1
0
0

F=XZ"+ Xy +wxy + wy’z

Problem Re-Formulation

Xy X2’ y'z’ yz
pl p2 p3 p4
xyz? 0 1 _
xyz 1 1 (p2+p3)(p1+p2)(p1+p4)p3p4=1
Xyz 1 0
Xyz 0 O
xy’z2 0 O

Given a boolean formula f, find a minimum
assignment to satisfy f (to make f=1)
— A minimum assignment is the one with the minimum cost

— The cost of a “p” can be measured by the required gates to
implement the prime

Unate Covering Problem

e Given n variables P={p1,p2,...,pn} and a POS
formula F=(...)(...)(...)...(...), find the
minimum subset of P
— S.t. assigning 1 to all variables in P makes F=1

e |t is called “unate” because all variables in F
are unate variables

Definition 1 A function f: B" > B is
X; iff

f;, (— fx,

This is equivalent to

f(m)< f(m")

Similarly for
Y f

X

< f;i

f(m)> f(m")

A function is in x; if it is either positive unate or negative
unate in x;.

Definition 2 A function is if it is unate in each variable.

Definition 3 A cover f is in x; iff x; ¢ ¢; for all cubes
(terms) c;eF

Example 1
f =ab+bc+ac

positive unate in a,b
negative unate in ¢

f(m)=1> f(m*)=0

15t step: Reduction of Matrix

e Eliminate rows by essential columns
e Eliminate rows by row dominance
e Eliminate columns by column dominance

Essential column

e p3 and p4 are essential
— So the two rows can be eliminated

X'y X'z’ y'z’ yz

pl p2 p4
xXy’z 0 1
xyz 1
xX’yz 1
Xyz 0
xy'z? 0

p3
1
0
0
0
1

1
0
0
0] essential

Row dominance

e If row i dominate row j, then remove row i
— Row i can be covered for sure

Column dominance

e If a prime p/has an equal or lower cost than a prime pj,

e And, p/is column-dominance of g/
— Then, we don’t want to select gy
— Because p/ covers more min-terms
e The “cost” of a prime is measured by the AND gate
implementing it
— Ex. xyz has a higher cost than xz

Cyclic core

e For this type of matrix, we cannot say for sure
which primes should stay
» We need to search for the lowest-cost answer

Systematic search

e how do we do a systematic search?
— Pick a variable
— Split it into two cases
» Set the variable 1
» Set the variable 0
— Try to stop as early as possible
» Without exploring the entire search sub-tree
e This is a typical paradigm called “branch and
bound”
— See your algorithm textbook

How to bound?

e By quickly computing the lower bound of the
cost associated with a sub-tree

e If that lower bound is > the current best
solution, then there is no need to proceed

AN

A+ Current solution cost = 4
Low bound cost =5 =» stop!

Lower bound = MIS

e Finding the lower bound number is to identify the
maximal independent set
— We want this number as big as possible

e For example, the 1st, 31, and 5™ rows are independent
e Hence, we need at least 3 columns (primes) to cover the rows
e This represents the lowest (possible) number of primes required

The obvious lower bound

e The obvious lower bound is 2
— Theorem 4.8.1 (orange textbook)

e Otherwise, there is a column (prime)
dominating everything else

Algorithm to compute MIS

MIS_QUICK (M) {
MIS =0
do {
¢ = CHOOSE SHORTEST_ROW (M)
MIS = MISuU{:}
M = DELETE_INTERSECTING ROWS(M, i)
} while (|| M ||> 0) continue
return (M1S)

}

e Define the “shortest”
— 1. Count the “1” in a row

— 2. Count the “1” by including all “1” vertically
(columns)

S WO

I I 1
©

S =]

> O

Heuristic 2.

Heuristic 1:
— Select {1}, Select {3}, output {1,3} = lower bound 2

» Heuristic 2:
— Select {1}, select {5}, select {6}, output {1,5,6} = lower
bound 3

10

The Branch and Bound

N
Bounded

) L=U=5"™
(#] 7)
i —_—
pipoph, 1 N rnii T O

PiPiPiPs, sPPiPIPS

\\ Bounded // C
" L=U=5
s) ()

ost=U=3

4
A1 O pepipuPiplo

s

Fs,. Cost=U =35

il 0
Py F.PmP.'l_/ \ WPuPiPh
// \K

Cost=0/=35

e Use lower bound to prune search space

The Branch and Bound Algorithm

Bep(F, U, currentSol) {
1 (F,currentSol) = rEDUCE(F, currentSol)
if (terminalCase(F)) J
if (cosT(currentSol) <)
U = cosT(currentSol)
return (currentSol)

}

else return (“no solution”)
J
I = LOWER_BOUND(F, currentSol)
if (L > U) return (“no solution”)
; = CHOOSE_VAR(F)
St = Bep(Fy,, U, currentSol U {z;})
if (cosT(S') = L) return (iS%)
SO =Ber(F U, currentSol)
return BEST_SOLUTION(SY, 59)

11

Example 1

e [set upper bound = 7] [MIS set lower bound = 2]
— Upper bound is the max size of current solution

e [split on prime 1] [get a solution {1,2} = lower bound]
e [stop]

Example 2

[upper = 7] [lower = 3]

[split on column 1]

[p2 and p6 are dominated] [remove p2 and p6]
[p3 and p5 become essential]

[answer {1,3,5}]

12

Example 3

e [upper = 12] [MIS gives lower bound = 4]

9 10 11

e Rows 1,4,12 are covered
e Columns 2 and 4 are dominated
e Column 3 becomes essential

13

e Current solution is
{p1,p3,p5}

This is a cyclic core

e [set p6=1] [choose either p7 or p8]
e Answer {p1, p3, p5, p6, p7}
e Upper bound now is 5

14

Backtrack to “p5=0"

e The lower bound = 5. There is no need to proceed
to the sub-tree

p5=0 (remove column 5)

7 8 91011

0 0
0 0
1 0

1

Backtrack to “p1=0”"

p2, p4, pl11 are essential. Remove them
P10, p13 are dominated by p5

91011

00
00
00
00

Lower bound check

Current partial solution = {p2, p4, pl1}

The reduced matrix has a lower bound 2
The total cost lower bound is again = 5

Stop.

16

