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Abstract. Symbolic simulation is an effective approach for verifying individual array blocks. This paper
presents two methods to enhance the capacity of symbolic simulation for handling large and complex
embedded array systems. The first method combines an ATPG decision procedure with symbolic simula-
tion. By developing a scheme that enables the ATPG to work effectively with a symbolic simulator, the
run-time OBDD sizes can be limited. In the second method, we propose a “dual-rail” symbolic simulator
where a given design is partitioned implicitly into control and datapath domains. Symbolic simulation is
carried out simultaneously on both domains. We demonstrate and compare the effectiveness of both
methods based on verification of the Memory Management Unit (MMU) in Motorola high-performance
microprocessors.
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1. Introduction

Embedded arrays are important components in many high-performance digital ICs.
The speed of these on-chip memory components is critical to the overall performance
of a chip. They are often custom-designed at transistor level. A typical array system
contains multiple array blocks, and interactions among these blocks can be complex
and hard to verify.

The size, complexity, and sequential nature of embedded arrays make their test
and verification very challenging. Because they are custom designs, correct modeling
can be time-consuming and error-prone. For both functional verification and struc-
tural equivalence checking of these arrays, researchers [1], [2] demonstrated that
Symbolic Trajectory Evaluation (STE) could be an effective approach. However,
past results were shown only based on verification of individual array blocks [2]-[6].

In STE, symbolic simulation is the underlying engine [7]-{9] utilizing Ordered
Boolean Decision Diagrams (OBDDs) [10] to manipulate ternary logic functions.
When verifying an operation that involves interactions among multiple array blocks,
the OBDD sizes can often blow up. Hence, in this paper, our goal is to enhance the
capacity of symbolic simulation so that multiple array blocks can be verified together
as a single system. We propose two approaches to enhance the capacity of symbolic
simulation. We compare the strengths and weaknesses of these two approaches.
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Our first approach incorporates an ATPG decision procedure into the symbolic
simulation framework [11]. In this approach, symbolic simulation is partitioned into
separate and simpler subprocesses by ATPG assigning constant values to a set
of selected control signals. Because the control space is partitioned, symbolic encoding
can be applied to optimize symbolic simulation on the datapath.

Our second approach is different from the first approach in terms of three aspects
[12]: (1) instead of explicit partitioning a design into control and datapath, the
approach adopts a partition scheme implicitly in the symbolic simulation, (2) instead
of using a decision procedure to handle the control part, it uses symbolic simulation on
both the control and the datapath, (3) instead of using symbolic encoding to optimize
symbolic simulation on the datapath, it adopts a node collapsing method that achieves
the same efficiency. We call the second approach dual-rail symbolic simulation.

To demonstrate the effectiveness of these two approaches, we apply them to verify
the Memory Management Unit (MMU) in Motorola high-performance processors.
Verifying the entire MMU with symbolic simulation was not possible before due to
the OBDD size blow-up when an ordinary symbolic simulator is used in STE.

The idea of partitioning functional space for symbolic simulation to handle large
and complex designs is not new. For example, the authors in [13], [14] proposed using
a combined SAT and OBDD-based symbolic simulation approach to avoid OBDD
blow-up. The authors in [15] proposed a hybrid approach that was able to verify a
64-bit multiplier by verifying individual adders using STE and then composing the
results to show that the adders were properly connected. The authors in [16] used the
hybrid approach to verify a radix-eight, pipelined, IEEE double-precision floating
point multiplier. The authors in [17] used a functional space decomposition approach
to verify an arithmetic circuit. With good understanding of the design, the authors
manually decomposed the verification task into a number of sub-cases, and verified
each sub-case independently. Since each sub-case involves only a part of the design
functionality, input constraints may be required to process each particular sub-case.
Encoding techniques can be applied to enforce such constraints. Our first method is
similar to that in [17]. The key difference is that we use an ATPG decision procedure
for the decomposition of the functional space. Moreover, our encoding techniques
are different. Our second method tried to achieve the same effectiveness as the first
method, without using the ATPG.

2. STE and Symbolic Simulation

In STE, specifications are given as trajectory assertions of the form Antecedent =
reapto Consequent where both Antecedent and Consequent consist of trajectory
Sformulae. Assertions specify a set of design properties in a restricted temporal logic
form, and STE checks to see if a given design satisfies a set of given assertions.

A trajectory formula can be a simple predicate such as “node; is 0” which specifies
that the signal node; should have the value 0 at the present time. With conjunction,
case restriction, and the next time operator, trajectory formulae can be constructed
from the simple predicates [18]. Moreover, there is a domain restriction operation
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when allowing specification of input constraints in the antecedent and restricted
output results in the consequent. If ¥ is a trajectory formula, and D is a Boolean
function, “node;is V when D” specifies that only when D is true, node; has the value V.
Otherwise, the value is unknown. Such a specification usually has two semantic
meanings depending on when it is placed. If it appears in the antecedent, then for
the unspecified domain D', the value of node; is the don’t care “X.” If it appears in the
consequent, then the computed value of node; should only be checked under the
restricted domain D. The value of node; under the domain D’ is ignored.

2.1. STE as Cycle-Based Constraint Solving Process

In our work, we assume that symbolic simulation is cycle-based, and the assertions
for an array unit (which may contain multiple array blocks) are given by the user.
The goal is to check that the RTL model satisfies the given assertions. We adopt a
cycle-based constraint-solving view for the STE.

Conceptually, trajectory formulae, specified in both antecedent and consequent, are
constraints on circuit signals. These constraints are ternary logic functions. In cycle-
based simulation, an assertion imposes ternary logic constraints on circuit signals based
upon clock definition. For the circuit to satisfy the assertion, it suffices to check to see if
all constraints can be satisfied simultaneously. When the constraints imposed by the
antecedent cannot be satisfied, this represents an “over-constrained” situation (mean-
ing that the input constraints are inconsistent) [18]. When the constraints imposed
by the consequent cannot be satisfied, then the design fails to satisfy the assertion.

The problem of simultaneously satisfying all constraints can be modeled as an
ATPG justification problem instance illustrated in Figure 1 [11]. In such a formula-
tion, constraints are synthesized into constraint circuitry. The task of the ATPG is to
find a test vector to make the output of the justification AND gate equal to 0. We
note that when the input space is limited by the domain constraints in the antecedent,
the ATPG search space is restricted.

3. The Target Example—MMU

Our work targets on the MMU design in Motorola high-performance microproces-
sors [19]. The MMU design is illustrated in Figure 2. The MMU contains a 64-entry,
two-way set-associative, Translation Look-aside Buffers (TLB) that provides sup-
port for demand-paged virtual memory address translation. The MMU also supports
variable-sized block address translation through the use of the Block Address Trans-
lation (BAT) array. The BAT contains four entries, and up to 15 bits of the effective
address (EA) are compared simultaneously with all four upper BAT entries during
the address translation operation. If the effective address matches any of the upper
entries in the BAT, the output bathit signal is 1, else it is 0. If there is a hit, the
corresponding lower entry will be the address output. In the architecture definition, if
an effective address hits in both the TLB and the BAT, the BAT translation takes
priority.
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Figure 1. Constraint solving as ATPG justification.
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Figure 2. Block diagram of MMU.

One particular MMU functionality to which we pay more attention is the transla-
tion operation that involves both the BAT and the TLB. That is, the effectiveness
address EA misses all four entries in BAT, and the TLB and the Segment Register
(SEQG) are responsible to produce the physical address. Another interesting case is to
verify the BAT alone. Figure 3 illustrates the detailed BAT organization.

The BAT is organized as a four-way Content Addressable Memory (CAM). In
each way, the registers are organized as upper registers (32 bits) and lower registers
(32 bits). In the non-SPR mode where spr = 0, the BAT translates the i (9 < i < 15)
most significant bits of the effective address ea into the physical address via CAM
associative read operation. The remaining ea bits pass unchanged.
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Figure 3. Simplified BAT organization.

In BAT address translation, the incoming effective address ea(0..14) is compared
to the 15-bit Block Effective Page Index (BEPI) entries. Each entry comparison is
masked by the 11-bit Block Length (BL) on the 5th to 15th bits of ea (and BEPI). In
the functional mode, the legal combinations of BL are 00...0, 00...01, 00...
011,...,011...1, and 11...1. A 0’s indicates that the bit should be compared. If
BL is all 1’s, then only the most significant 4 bits are compared.

Each tag entry contains two “valid” bits (Vs, Vp) to indicate if BEPI is valid.
Which valid bit is used is controlled by the incoming signal privilege. If an entry valid
bit is 0, then the entry comparison fails by default.

When there is a match in BEPI, the corresponding 15-bit Block Real Page Number
BRPN is sent out as the upper 15-bit of the physical address brpn(0..19).

4. Method I: Partitioning The Verification Process by ATPG

Given a BAT assertion, an intuitive point to separate the control from the datapath
would be the OR gate for generating the bathit signal. The function computed by
the OR gate includes the function (BEPIy = ea) | (BEPI, = ea) | (BEPI, = ea) |
(BEP3, = ea) where BEPI; denotes the BEPI bits in way i of the BAT. The “="
denotes the equality checking by a 15-bit comparator, and the “|” denotes the logic
OR. Without a good initial ordering, the OBDD size for the bathit function can easily
blow up.

Figure 4 illustrates a partition of the BAT into control (ATPG) and datapath
(symbolic simulation) domains. The control is handled by ATPG, and the datapath is
handled by symbolic simulation. The BAT assertion is synthesized into a constraint
circuit using a CAM primitive [11].

Suppose that in the assertion, we have camhit = 0. To verify that the BAT behaves
the same as the four-way CAM given that camhit = 0, we proceed with the following
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Figure 4. Combine ATPG and symbolic simulation.

three steps. (1) The ATPG assigns 0’s to all individual camhit signals (camhitO—
camhit3), (2) a backward symbolic analysis on the CAM produces symbolic
constraints based on the ATPG-assigned values, (3) the symbolic constraints are
simulated on the BAT to check if indeed, a 0’s is obtained at the bathit signal.

Suppose that camhit = 1 in the assertion. In the first step, the ATPG would
enumerate all possible input possibilities at the OR gate. As a result, the above
three steps will be repeated 15 times. Hence, for complete verification of the BAT,
the ATPG will generate 16 sub-cases (or sub-assertions).

Note that the ATPG processes the circuit backward while the symbolic simulation
simulates the circuit forward. In order for these two engines to work together,
a special backward analysis process is required to produce the required constraints
for symbolic simulation. We call this process the symbolic backward analysis.

4.1. Symbolic Backward Analysis with the CAM

The symbolic backward analysis on the CAM primitive can be illustrated by Figure 5.
Assume that the hit signal is 0, the symbolic backward analysis is to produce the
symbolic constraints that satisfy hit = 0. These constraints can be produced in terms
of the CAM’s input tag (case 1) or the CAM’s initial states (case 2)._I)n case 1, the
initial states in the CAM have been set with four symbolic vectors Tg... T3. We
need to constrain the symbolic input fag such that it will not match any of the four
symbolic vectors. In case 2, the input symliglic vector is given as 7. We need to
constrain the initial CAM states such that 7" will match none of the tags stored in
the CAM. In the following, we discuss how to encode the constraint in case 2. The
encoding scheme for case 1 is more complicated [11]. For the purpose of verifying
the BAT, both types of constraints can be used. Here, we present only the solution
to the case 2. -

Given the symbolic vector 7', we introduce four symbolic indices Jy, Jy, Jo, J3.
Then, we use J; to encode the initial state in wayi. The following represents the
erEoding for the symbolic content that should be stored in way0. “way0[w — 1]” and
“T'[w—1]” denote the most significant bits of the register in way0 and the input
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Figure 5. Tllustration of backward analysis with the CAM.

- .
tag T, respectively.

way0[0] := (when(Jy = 0))(—
wayO[l] := (when(Jy = 1

wayO[w — 1] := (when(Jo =w — 1))(—\?[14/ —1])

mgyl, way2, way3 can follow similar encoding schemes. Then, it is easy to check that
T will match none of the tags stored in the CAM [4].

The above encoding scheme can be extended easily to represent the cases that
camhit = 1. For example, suppose that for justifying camhit = 1, ATPG assigns 0, 1,
1, 0 to camhitO—camhit3. Then, we introduce two symbolic indices J, and J3 to encode

. . -
that the initial States in way0 and way3 do not match 7'. For wayl and way2, we can
simply assign 7 as their initial values.

4.2. Combining Symbolic Simulation with ATPG

To implement the combined ATPG and symbolic simulation method described
above, we need to resolve the following three issues: constraint modeling and synth-
esis, circuit partitioning, and symbolic backward analysis in general. We summarize
the key ideas below [11].

To construct the justification instance based upon a given assertion, we need a
modeling scheme to synthesize the cycle-based constraints into constraint circuitry.
Since the assertion specifies constraints based upon clock cycles, within each cycle,
the constraints can be thought as a combinational logic. Then, we can use latches to
separate constraint circuits in different time frames (as that illustrated in Figure 1
before). The key in constraint modeling is to utilize two predefined primitives: RAM
and CAM. The RAM primitive is similar to the memory primitive commonly used in
commercial ATPG tools. The CAM primitive is similar to the one used in the BAT
example before. In our verification methodology, we enforce that user specifies an
assertion with these primitives.
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Given a justification circuit instance, the constraint circuit needs to be partitioned
into ATPG and symbolic domains. The partitioning is not necessary for the circuit
under verification. The partitioning is static and follows the simple rules: (1) the
(word-level) comparator outputs are the boundaries between the two domains (as
that shown in the BAT example), (2) logic that controls a MUX selection or an
enable signal for a primitive (such as latch or tri-state buffer) belongs to the ATPG
domain, (3) memory primitives belong to symbolic domain, (4) input domain
constraint logic are handled by symbolic simulation, (5) all logic that locates on the
path of a word-level data bus (or address bus) going to a memory stays in the
symbolic domain, (6) finally, the output logic to the justification output is handled
by ATPG.

We note that if there exists a complex Finite State Machine (FSM) in the circuit for
generating control signals, then the entire FSM should be handled by the ATPG.
However, for the high-performance array designs, complex FSM usually does not
exist. Hence, currently we do not consider the handling of a complex FSM.

In backward analysis, we need to process the part of constraint circuit, which
is partitioned into the symbolic domain. Figure 6 depicts several examples to
illustrate this analysis. In each case, a symbolic value (or vector) is given at the
output of a primitive. Input or initial state constraints are derived based on the
functionality of the primitive. Figure 7 illustrates the backward analysis on a word-
level comparator.

addr | addr
N a — ren —= ""lren
i — | wen <~ wen —
& 3B | e el b
L <=C dout —— H dout —
—= .d
L RAM : RAM
v i
input constraint: initialized as RAM[K'] =D

when(e = F(a,b,c,d))

Figure 6. Tllustration of symbolic backward analysis.

T =4, in2[J] X T[]

Figure 7. Backward analysis on a word-level comparator.
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5. Experimental Results

All our experiments were run on a Pentium 4 1.5 G machine running Linux
Mandrake 2.4.8-26 mdk with 512 M memory. We first focus on the BAT assertion
where ea matches none of the BEPI entries (i.e., bathit = 0).

SS-alone We use a Motorola in-house symbolic simulator that was modified from
Voss [18]. We experimented with two cases: one with the variable ordering same as
the design’s primary input ordering, and the other with a manually-optimized
input variable ordering.

ATPGISS The combined ATPG and symbolic simulation method was implemen-
ted as a separate tool.

Without manual effort to adjust the initial variable ordering, symbolic simulation
cannot finish the BAT miss assertion where more than seven out of the 15 bits in
BEPI and ea are assigned with symbolic values (other bits are assigned with 0 or 1).
OBDD reordering would consume too much time during the symbolic simulation
and we aborted the run after waiting for 10 min.

With manual effort, we were able to find a good ordering that allows symbolic
simulation (SS) to run. Table 1 shows the results. For example, in the 3-bit exper-
iment, the three most significant bits of BEPI and ea were given with symbolic values.
Other bits were fixed with the constants 0 and 1. For the OBDD sizes, we show two
types of data: the total number of OBDD nodes at the end of symbolic simulation
(Total OBDD nodes), and the maximum number of OBDD nodes during the sym-
bolic simulation (Max OBDD nodes). The total number of OBDD nodes depends on
the design functionality and the variable ordering at the end (after dynamic order-
ing). The maximum number of OBDD nodes depends on the implementation and the
initial ordering given. The last column in Table 1 shows the results on the combined
ATPG and symbolic simulation method.

Table 2 shows results on the TLB and the MMU. For TLB, the assertion is with
the constraints #/bhit0 = 1 and t/bhitl = 0, i.e., a hit on way0. The TLB is organized
as a two-way (way0, wayl) 64-entry array, addressable by a TLB index tindex[0..5].
For address translation, the two 35-bit tags stored in the entry pointed by the tindex,
are compared to the effective address ea and the content of the segment register.
When the tag in way0 matches, the address is computed from the data stored in way0
and t/bhit0 = 1 (and vice versa). For symbolic simulation alone, if no manual effort is

Table 1. Results on The BAT Miss Assertion

Symbolic Bits 3-Bit 6-Bit 10-Bit 11-Bit 15-Bit ATPGISS
Time (s) 8.6 11.9 74.2 127.1 377.3 0.2
Total OBDD nodes 4531 8485 12,271 14,991 28,395 377

Max OBDD nodes 133,886 141,924 186,173 199,650 392,544 496
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Table 2. Results on TLB (Hit on way0) and MMU (BAT Miss, TLB Hit)

TLB MMU
Time (s) Total OBDD nodes Time (s) Total OBDD nodes
SS-alone! 2.8 10,219 Abort Abort
ATPG/SS 3.1 12,149 8.3 12,738

1. With manually optimized ordering

involved to adjust the variable ordering, the simulation would abort when more than
19 symbolic bits in each of the two TLB tags are used. With 18 symbolic bits, the
symbolic simulation took 124.3 s to complete and the maximum number of OBDD
nodes was about 4.5 M. With 20 symbolic bits, the maximum number of OBDD
nodes exceeded 22 M and the run aborted. However, for ATPG/SS, no manual
ordering is required. The MMU assertion is the address translation assertion where
the BAT generates a miss and the TLB generates a hit. The combined ATPG/SS
strategy can finish the checking of the assertion in less than 9 s.

6. Method II: Dual-Rail Symbolic Simulation

From the above experiments, we can see that the combined ATPG and symbolic
simulation method can be much more efficient than the symbolic simulation alone.
However, the combined method presents two difficulties in implementation.

1. Since ATPG justification is a backward process and symbolic simulation is a
forward process, the symbolic backward analysis is required to produce the
symbolic constraints based upon ATPG-assigned constant values on the
constraint circuit. Symbolic backward analysis utilizes predefined primitives
for simplification. This requires that we implement a separate interpreter for
these primitives in order to conduct the analysis.

2. Using the CAM-based symbolic encoding is essential for obtaining the
high efficiency. This means that the knowledge of the encoding should
be built in with the CAM primitive and be processed by the backward
analysis tool.

To avoid the complexity of backward analysis and the CAM encoding scheme, our
goal in this section is to provide an alternative method that achieves the same
efficiency as the first method and that is more natural to implement. In our second
method, we utilize symbolic simulation to replace the ATPG. The result is a dual-rail
symbolic simulation scheme. In this method, we replace the CAM encoding with
OBDD node collapsing based on identifying word-level equality functions.
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6.1. Replacing CAM Encoding with OBDD Node Collapsing

Section 4.1 discusses the encoding of constraints for a particular hit/miss combina-
tion. Suppose that we want to encode all possible initial states in a four-way CAM
based on a given input tag. Notice that for a CAM, there can be only two outcomes
from each tag entry comparison: 1 (match) and 0 (mismatch). Hence, we can
introduce a new variable m; to indicate if the tag in_) entry i, T[i], matches the
incoming tag 7' or not. Then, the comparison between 7' and T'[i] will always result
ig two possible outcomes: match (m;) and mismatch (m]). Assume that
T =1lt, ...,ty—1], where w is the tag width. The following explains the symbolic
encoding for T[i],i =0, 1, 2, 3.

T(i[0] := ((when(m, A (I = 0)))(=10)) A ((when(m,)(10))
Tl = (Owhen(m A (I = 1)))(=11)) A ((when(m;) (1))

T(i][w — 1] := ((when(m; A (I; = w — 1)))(=ty—1)) A ((when(m;)(t,,—1)) (1)

I; is [log w] wide to indicate which bit has the mismatch. With this encoding,
symbolic simulation on the CAM will result in mg, m;, m,, ms at the four hit outputs.
Then, the final CAM hit output will be the OR of the four symbols, mg, m;, m,, ms. If
we replace each m; with a constant value 0 or 1, then the above encoding scheme can
be reduced to one of the encoding schemes discussed in Section 4.1.

The CAM encoding scheme just described is efficient because essentially, it
re-starts the computation at each comparator output by introducing new variables
(m;). Effectively, it breaks the symbolic simulation into two separate runs, one before
the comparator output and the other after the comparator.

In our second approach, the simulator introduces a new symbolic variable when-
ever an equality function such as “4 = B” of two symbolic input vectors 4, B, is
identified during the course of symbolic simulation. We call this method the OBDD
node collapsing. These equality functions can be extracted from the assertions
specified by the user. For exampl& suppose in the assertions, symbolic vectors of
equal lengths are defined (such as 7', T'y). During the course of symbolic simulation,
the simulato_r> wilcheck if the computed OBDD of a signal contains the equality
functions “7 = T'y.” The equality function can be the output result from a word-
level comparator primitive COMP(tag, T[0]). However, _t)he comparator primitive
may not be well defined in a real design and moreover, 7 and T, may have been
combined with other control symbols before reaching the comparator. Hence, the
simulator needs to constantly monitor the computed results to identify that the
desired equality function has been computed. Various heuristics were used to mini-
mize the need for constantly monitoring the computed results [12]. Figure 8 shows
the flow of the OBDD node collapsing method.

The OBDD node collapsing also intends to restart the symbolic simulation intern-
ally at each word-level comparator output. However, it is fundamentally different
from the CAM encoding. The process of CAM eng))ding is memory-less: At each
comparator output, all information beforehand (ex. 7') is lost. The simulation result
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contain only the symbol m;. On the other hand, with node collapsing, the original
equality functions are kept and linked to the new variables m;. If necessary, m; can be
expanded back to its original equality function. Hence, no information is lost.

6.2. Dual-Rail Symbolic Simulation

In our dual-rail simulator, symbolic simulation is applied on both the datapath and
the control part. The OBDD node collapsing method is applied on the datapath. This
process is shown in Figure 9 (as opposite to that shown in Figure 4).

In our dual-rail symbolic simulation, the results of each signal i are stored as a list
of 2-tuples (D}, Vi), ..., (Di, Vi) where each D/ is called a domain (control part) and
each V' is called a value (datapath). Both are represented with OBDDs. (D), V}') can
be read as “signal i has the value V) under the domain D;.” For all j # k, (D/, V') and
(Dy,, V) are mutually exclusive in terms of the functional spaces they cover.

Initially, each primary input signal i will be assigned with the 2-tuple (1, V’). In
other words, the domain at each input is the whole functional space. We note
that(1, V') = {(V', 1), (=V",0)}, and (D, V') = {(D'V", 1), (D'(=V"), 0)}.

During the course of the symbolic simulation, the rules for constructing a two-
tuple list are defined over a set of primitives. Figure 10 illustrates some examples.
Notice that the values in 2-tuples can be moved into the domains depending on the
primitives encountered. For example, in the case of a MUX, the value part V0 on the
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(D1, V1) (DO, VO)

(DO VO D1, V1) (DO D1, VO V1)
(D2, V2)

(DO VO’ D2, V2) (DO D1’ VO’ + DO’ D1 V1°, 0)

T (D1, V1)
(DO, VO)
(b1, V1) I\ (Do vo D1, v1) (b0, V0 O(io’ Vo)
(DO, V0)

Figure 10. Tllustration of 2-tuple list construction rules.

(LMjD (1,A @ B)

(1,B)

(1,0) o) {((A® B,D),

(1, D) 1 (A®B,C)}

Figure 11. An example of using the 2-tuple list.

select line will be moved to the domain part on the output. For a tri-state buffer,
a similar operation is performed. We note that for a latch controlled by a latch
enable signal, it can be modeled similarly to a MUX where input-0 is given as the
original state 2-tuple list, and input-1 is given as the new state 2-tuple list.

Figure 11 shows an example of applying the 2-tuple list. The output of the
XOR is used in the domain part of the MUX’s output 2-tuple list. The input
symbols of the MUX (C and D) go into the value part of the 2-tuple list.

In the proposed 2-tuple scheme, the definition between control and datapath is not
static. For example, given a list {(D}, V'), (D}, V), the list can be converted into a
single 2-tuple as (D} + D5, (D{, V| + D5V3) because the 2-tuple (Dj, V{) and the
2-tuple (D5, Vi) are mutually exclusive. Moreover, if (D} V D) = 1), then it can
further be reduced to 1, (D} V] + DyV}). The ability to manipulate a 2-tuple list by
exchanging the symbolic values between the domains and the values implies that the
boundary between the control part and the datapath in our dual-rail symbolic
simulation is not static (and is not explicitly defined either).

At the end of symbolic simulation, the results from the circuit under check are
compared to the results from the model of the assertions for consistency checking.
Suppose that results for signal i given by the assertion are {(D}, V), ..., (D!, D})}.
Suppose that results for the corresponding signal j in the circuit model being checked

are {(D},V}]),....(D,,Di)}. Then, we first check if (D|+---+D})C
(D] +---+ D). If this is not true, then the check fails. Otherwise, we further
check, for each domain D),VDi, D; N D), # ¢, whether or not (D}, V}) is consistent
with (D), V7).

In the first approach, since ATPG needs to enumerate all possible solutions and
then call symbolic simulation to run on each sub-case, it may involves repeated
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simulation on part of the design. On the contrary, the dual-rail simulation can specify
all inputs with symbols and simulate all functionality in one run. With more symbols
specified, the complexity in a single run may increase significantly.

7. Additional Experimental Results

In this section, we discuss experimental results on the MMU design using the dual-rail
symbolic simulation. We compare two methods: the ordinary symbolic simulator (SS)
as described before, and the dual-rail symbolic simulator (SS?). For each simulator, we
discuss the cases with manually optimized initial variable ordering (denoted as “SS-w”
and “SS%-w”) and the cases without (denoted as “SS-wout” and “SS*wout).”

For these experiments, symbolic variables were assigned to all inputs (and to all
initial states of the arrays), and we consider the simulation of the MMU design. All
design functionalities were simulated during a single run of the symbolic simulation.

Table 3 shows comparison results on the BAT. For “SS-wout,” if no manually
optimized initial variable ordering was specified, the symbolic simulation could not
handle the case within a reasonable time. We note that for comparing two symbolic
vectors, the best ordering is to interleave the variables from the two vectors. This idea
was used in the manual optimization of the initial variable ordering.

We note that in both simulators, dynamic ordering was implemented. In SS%, the
OBDDs include variables introduced by the node collapsing of equality functions as
explained before. It can be observed that the performance of “SS>” is less dependent
on the initial ordering given. On the other hand, the performance of “SS” highly
depends on the initial ordering given. Without a good initial ordering, the maximum
OBDD size could exceed 20 M.

Table 4 shows results on TLB. Without a good initial ordering, “SS-wout” could
not finish the run in 10 min. However, without a good initial ordering, “SS*-wout”
could finish the run very quickly. The last column in Table 4 shows our final results

Table 3. Experimental Results on BAT

SS-wout SS-w SS%-wout SS%w
Time (s) Abort 1038.2 6 2
Max OBDD nodes Too big 2399,140 537 254

Table 4. Experimental Results on TLB and MMU.

TLB results MMU results

SS-w SSZ-wout SSZ-wout

Time (s) 2.2 2 Time (sec) 9.1
Max OBDD nodes 374 170 Total OBDD nodes 16,842
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on the MMU. With all inputs being assigned with symbolic variables, the ordinary
symbolic simulation could not handle the run even after a significant amount of
manual effort were spent to optimize the variable ordering.

8. Conclusion

In this paper, we present two methods for enhancing the capacity of symbolic
simulation. We demonstrate the effectiveness of both methods through experiments
on the MMU design in Motorola microprocessors. Although both methods utilize
similar concepts to avoid OBDD blow-up, we conclude that the dual-rail symbolic
simulation is an ecasier and more flexible approach for implementation. In the
combined ATPG and symbolic simulation method, symbolic encoding is essential
to obtain the efficiency. With OBDD node collapsing, the dual-rail symbolic simula-
tion introduces new variables to replace equality functions. Essentially, the node
collapsing method achieves the same efficiency as the CAM encoding method for
verifying arrays. The dual-rail symbolic simulation is able to simulate all functional-
ities in a single symbolic simulation run by assigning symbolic variables to all input
signals and to all initial array states.
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