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Abstract

In the past, Symbolic Trajectory Evaluation (STE) has been
shown fo be effective for verifving individual array blocks.
However, when applying STE to verify multiple array blocks
together as a single system, the run-time OBDD sizes would
often blow up, In this paper, we propose the use of both
ATPG-based justification engine and symbolic simulation to
facilitate the application of STE proof methodology for ar-
ray systems. Qur method translates a given verification prob-
lem instance into ATPG justification objectives, and partitions
a given design into ATPG and symbolic simulation domains.
Then, by developing a scheme thar enables ATPG jusiification
engine to work closely with the symbolic simularor, the run-
time OBDD sizes during each symbolic simulation run can be
limited. We demonstrate the effectiveness of our approach by
verifying the Memory Management Unit (MMU) in Motorola
high-performance microprocessors. The verification of MMU
as a whole was not possible before because of the OBDD size
Blow-up problem when symbolic simulation is used in the STE
proof process.

1 Introduction

Embedded memories or arrays are important components in
digital ICs for most high-performance applications. The speed
of these on-chip memory components is critical to the over-
all performance of the chip. They are often custom-designed
at the transistor level to optimize the performance. Dynamic
logic and self-time circuitry are widely used in these designs.
Pipelining and prediction techniques are commeonly employed.
A typical array system contains multiple array blocks. Interac-
tions among these blocks can be complex and hard to verify.

The size, complexity, and sequential nature of embedded
memories make their test and validation very challenging. Be-
cause they are custom designs, correct modeling can be time-
consuming and error-prone. Both simulation-based and for-
mal techniques have been tred to validate arrays. However,
simulation-based approaches are often incomplete due to the
exponentially large state space. Formal techniques such as
STE assertion-based symbolic simulation have been shown to
be successful in terms of both functional verification and struc-
tural equivalence, Nevertheless, these techniques could only
be applied for verifying individual array blocks [1, 2}. In STE
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proof method, symbolic simulation is used as the underlying
engine [3,4, 5,7, 6, 8,9, 10] which utilizes Ordered Boolean
Decision Diagrams (OBDDs) [11] to represent ternary logic
functions.

The OBDD-based STE proof method works well for each
individual array [12, 13]. With special symbolic encoding tech-
nigues, it can also be efficient to verify arrays which are content
addressable in nature [14). Nevertheless, when verifying an op-
eration that involves interactions among multiple array blocks,
the OBDD sizes often blow up. Therefore, in the past the STE
method was never applied at the system level where multiple
blocks are combined as a whole.

In this work, we attempt to provide a solution to avoid the
OBDD size blow-up problem so that STE proof method can
be applied at the system tevel. Our approach is to partition the
problem into ATPG and symbolic simulation domains, and to
utilize both ATPG justification engine and OBDD-based sym-
bolic simulator to solve the problem. By developing an effi-
cient scheme that enables both engines to work together, the
OBDD sizes during each symbolic simulation run can be lim-
ited. Our goal is to demonstrate that this new strategy can ver-
ify multiple array blocks together as a single system, as op-
posed to verify individual blocks separately in a system.

The rest of this paper is organized as follows: Section 2
reviews prior related work and points out the novelty of our
approach. Section 3 describes the STE, the assertion proof
methodology, and OBDD-based ternary symbolic simulation.
In Section 4, we use a content addressable memory as an ex-
ample to illastrate the problem of symbolic simulation, and il-
lustrates the fundamental idea to combine ATPG and symbolic
simulation. The detai! of our techniques are presented in Sec-
tion 5. Section 6 includes a sequence of experiments to com-
pare symbeolic simulation to the proposed ATPG/symbolic sim-
ulation combined approach. The effectiveness of our method
will be demonstrated based upon these experiments using Mo-
torola microprocessor MMU design. Section 7 concludes the
paper.

2 Comparison to Prior Work

STE has been used to validate memory arrays such as on-
chip caches and register files. In [12], authors used the Voss
STE [15] system to verify a multi-ported register file unit and a
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data tag unit in PowerPC ™ microprocessors. With symbelic
indexing, the number of variabies required to verify properties
of these arrays was approximately logarithmic in the number of
memory locations, thus ameliorating the state explosion prob-
lem. In [14], authors introduced the usage of special symbolic
encoding schemes to minimize the OBDD size complexity of
STE verification for content addressable memories (CAMSs).
Two CAMs, a Block Address Translation (BAT) unit and a
Branch Target Address Cache (BTAC) unit, were verified with
the new schemes. For all these circuits, the verification can be
done at the switch level, so that the validation was performed
on the actual designs. In [2}, various validation methods, in-
cluding STE were compared based upon design error injection
and simulation. It was shown that although STE approach was
able to validate array blocks, the quality of validation could be
highly dependent on the assertions supplied to the STE pro-
cess. Therefore, to ensure high quality, automatic generation
of assertions [16] should be used. In a recent work [13], STE
was employed as an automatic structural equivalence check-
ing methodology (between RTL and schematics) for Motorola
high-performance microprocessor arrays.

All of the previous work utilizes STE to target individual
blocks of an array system. Due to OBDD size complexity,
STE was never applied at the system level to verify multiple
array blocks as a whole. In the past, when verifying an individ-
ual array block, block input constraints irnposed by the outputs
of other blocks were extracted manually. In many verification
cases, including both equivalence checking and (block-level)
functional verification, these input constraints can greatly af-
fect the resuiting quality. To ensure complete verification, it is
imperative to verify multiple array blocks together as an unified
systermn.

For test applications, verifying block input constraints is
crucial as well. Valid input constraints can help to remove scan
patterns that are not achievable in full-system functional mode.
in many cases, especially for custom arrays, application of non-
functional patierns in scan may result in unexpected problems
on the actual silicon (such as power problemt).

In this work, we propose to combine ATPG justification en-
gine and OBDD-based symbolic simulator for array system
validation. The idea of using multiple engines (such as combin-
ing SAT solver and OBDD-based symbolic simulation) is not
new. For example, Wilson er. al., [17, 18, 19] propesed using
a combined SAT and OBDD-based symbolic simulation ap-
proach to eliminate run-time OBDD memory blow-up. Huang
et. al., [20] proposed using arithmetic and Boolean ATPG
solver to verify arithmetic circuits. Hazelhurst and Seger have
explored a hybrid approach based on theorem-proving and STE
[21]. STE is used to prove low-level properties of the circuit.
A set of inference rules are used 1o compose the results of STE
in a theorem proving environment. The hybrid approach was
able to verify a 64-bit multiplier by verifying the individual
adders using STE and then composing the results to show that
the adders were properly connected. Aagaard and Seger used
the hybrid approach to verify a radix-eight, pipelined, IEEE
double-precision floating point multiplier [22].

The key difference of our work from prior work is that our
approach is designed to optimize the run-time efficiency for
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verification problems that involves multiple array blocks. We
will describe a novel scheme that enables ATPG and symbolic
simulation to efficiently work together. The effectiveness of
our techniques will be demonstrated through experiments on
an MMU design from Motorola high-performance micropro-
cessors [23].

3 Background

Symbolic Trajectory Evaluation (STE) [8, 9] is a formal ver-
ification technique that is based on ternary symbolic simu-
lation [6, 7]. Ordered Binary Decision Diagrams (OBDDs)
[11] are used to efficiently manipulate ternary functions during
STE.

In STE, specifications are given as frajectory assertions of
the form Antecedent —; z4p7o Consequent where both An-
recedent and Consequent consist of trajectory formulae. Asser-
tions specify a set of design properties in a restricted temporal
logic form. STE checks to see if a given design satisfies a set
of given assertions.

A trajectory formula can be a simple predicate such as
“node; is O which specifies that the signal node; should con-
tain the value O at the present time. With conjunction, case
restriction, and the next time operator, trajectory formutae can
be constructed from the simple predicates. Moreover, there is a
domain restriction operation when allowing specification of in-
put constraints in the antecedent and restricted output results in
the consequent. If V is a trajectory formula, and D is a Boolean
function, “node; is V when D specifies that only when D is
true, node; contains the value V. Such a specification usually
has two semantic meanings depending on when it is placed. If
it appears in the antecedent, then for unspecified domain 7,
the value of node; is the don’t care X" If it appears in the
consequent, then the computed vatue of node; from the sym-
bolic simulation of the circuit will only be checked under the
domain D. The value of node; under the domain DY is ignored.

w
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Y

Figure 1: An [lustrative Example

Figure 1 gives a simple circuit example. Notice that the in-
puts @ and b are restricted by a functional constraint. Such a
constraint can be from the surrounding logic not shown in the
figure. The following describes a valid assertion to be checked
{where A, B,C,D,W.Y are arbitrary 1-bit symbols). Note that
we use “A” and "V” to specify the conjunction and disjunction
of formulae in the assertion, and we use ™" and "+ to specify
logic AND and logic OR in Boolean function.

(when(A=1VB=1)a=A)) A
{(when(A=1VB=1)}{(b=B)) A
(e=C)A{d=D)A(w=W)A{y=T)
==LEADTO



(when((W =1AY Z1)A(A=1VB=1)){e=A-B)) A
(when{Y = 1AW # 1){(e=C-D)}

The antecedent in the above assertion supplies symbolic in-
puts. In the STE process, ternary symbolic simulator simulates
the given inputs and input constraints on the circuit. The re-
sults are compared with the consequent. Note that the conse-
quent part checks the results only when W #Y. WhenW =Y,
the output e is defined as unknown value “X” and hence, is not
checked. Also note that the domain constraints can be applied
in both antecedent and consequent.

Depending on how delay models are defined, the notation
"= gapT¢" in the assertion can have multiple semantics. If
zero delay model is wsed, "= papro” behaves like a sim-
ple implication. If 1 unit delay is associated with every gate,
"= papTe” Suggests that the consequent is true after 2 time
units.

When symbolic simulation is carried out directly on the
transistor-level models, unit delay model is necessary for cap-
turing the behavior of dynamic logic and self-time circuitry
[13]. If simulation is done on RTL or gate-level models, zero
delay can be used. In the later case, the symbolic simulator
behaves like a cycle-based simulator.

3.1 STE as Cycle-Based Constraint Solving

In our work, we assume that the symbolic simulator is cycle-
based, and the assertion for an array unit (which may contain
multiple array blocks) is given by the user, The goal is to check
that the RTL model satisfies the given assertion,

Conceptually, trajectory formulae specified in both an-
tecedent and consequent are constraints on circuit signals.
These constraints are ternary logic functions. For two ternary
functions fi{xy...xn), fa(x5...x,}, we say that f> satisfies f)
if the following two conditions hold:

1. vV binary values vy...v, assigned to xj...x,, Iif
filvi.ove) =1, then fol{vy...v) = L.

2. ¥ binary values wvy...v, assigned to xj...x, if
Jilvi...vy) =0, then fo{v;...v;) =0.

Note that because f is a ternary function, it is possible to
have an input assignment v| ..., such that fi{vi...v,) =X.
For those inputs, f2(vi...v,) is unrestricted, and can be one of
the 0, 1, and X.”

In the context of above ternary satisfiability check, the prob-
lem of checking the assertion in STE can be viewed as a con-
straint solving problem. This is illustrated in Figure 2,

Asge[!ion

P T
Antecedent ::{> Caonsequent

4 4 14 3
co c1 [+3 C3

Figure 2: Constraint Solving in STE

In a cycle-based simulation environment, an assertion im-
poses ternary logic constraints on circuit signals based upon

clock definition. For the circuit to satisfy the assertion, it suf-
fices to check to see if all constraints can be satisfied simultane-
ously. When a constraint given by the antecedent cannot be sat-
isfied, this represents the “over-constrained” situation (mean-
ing that the input constraints are inconsistent) defined in the
STE [15]. If a constraint given by the consequent cannot be
satisfied, then it indeed represents an assertion fail.

retrigve signale
tmm olroutt

Syntheslizat Constraint net-list An sxampla

Figure 3: Constraint Solving as ATPG Justification

The problem of simultaneously satisfying all constraints can
be modeled as an ATPG justification problem as illustrated in
Figure 3. In such a formulation, constraints are synthesized
into constraint circuitry, and the task of ATPG is to find a test
vector to make the output of the justification AND gate equal
to 0. We note that when the input space is limited by the do-
main constraints in the antecedent, the ATPG search space is
restricted. Therefore, the test vector can only come from the
functional domains specified by the antecedent constraints.

Since symbolic simulation utilizes OBDDs, and ATPG uti-
lizes backtracking search, by converting a STE assertion check
problem into an ATPG justification problem, we essentially
transform the space complexity into time complexity. There-
fore, if an ATPG justification engine is used to solve the prob-
lem, and if in the original problem the OBDD sizes would blow
up, then in the wansformed problem, the ATPG run time will
most likely blow up as well. Hence, applying ATPG alone to
the constraint solving problem will not be sufficient.

4 CAM: An Illustration Example
In this section, we use a simple content addressable memory
{CAM) to illusirate why symbolic simulation or ATPG alone

can be inefficient. Figure 4 depicts a CAM example similar to
the illustration example used in [14].

L'lg’!n[ﬂ..l-"

[i‘el

* dataout[0..d-1]

Figure 4: A CAM Example: Tag size = ¢, No, of entries
= n, and Data size = d

The CAM performs the following operation.  The
inputs ragin{0..r — 1] are compared with n tag entries
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T[0,T{1],...,T[r — 1. If T[i] matches the ragin, then
match(i] = 1 and the corresponding data D{i] are placed at the
owput daraout{0..d — 1]. For all other mismatch entries j,
match|j] = 0. Normaily, we assume that at most one tag en-
try can match the incoming tag. The /¢ signal indicates that
there is a match in the tag.

Assume that # = 4. Let TV, T3¢ TP T TV be -bit
symbolic vectors. Let D§¢, D¢, D¢, D¢ be d-bit symbolic
vectors. Then, the CAM operation can be specified as the fol-
lowing assertion.

(Tl =Tg N TN = TVIA (T2 = TP A(TB = T
(tagin = T"°) A(D[0] = D) A
(D[1) = D) A (D[2) = D) A (D3] = D<)
== LEADTOQ
(when(nomarch)(hit = 0))A

{when{matchonly0)(hit = 1 Adataout = DIFE)A
(when(matchonlyl}(hit = 1 Adataout = D**))A
{when(matchonly2)(hit = 1 Adataout = DF*)IA
(when(matchoniy3}(hit = | Adaraout = DY)

where nomatch indicates the condition that 7V¢¢ 2 T.¥*° for
all i =90,1,2,3. And matchoniy0 indicates the condition that
TY*% matches only T (and so on).

When OBDD-based symbolic simulation is used to verify
the assestion, the OBDD size can easily blow up at the output
hit [14]. This is because the OR function for generating the
hir signal creates too much interdependency among the sym-
bolic tag variables used in the assertion, and the number of tag
variables 1s large (=t x n+1).

if the problem is transformed into an ATPG justification in-
stance and an ATPG is used, the run time can exponentially
blow up as well. This can be illustrated by considering the
equivalence checking problem of two £-bit comparators. The
ATPG would make O(2') decisions to exhaust the search space.
For CAM design, it is not unusual o have t > 32, Hence, ATPG
alone cannot solve the problem.,

4.1 Split Assertion by ATPG

One possible way to solve the problem is to partition the de-
sign into ATPG and symbolic simulation domains. An intuitive
partition is to give the OR gate for generating the hir signal to
ATPG, and leave the rest of the design to symbolic simulation.
Then, suppose that ATPG intends to justify a "0 on the Air
signal. By ATPG implication, it will assign "0” to all internal
matchi] signals (for i = 0...n —1). Then, ATPG can call the
symbolic simulation to check if indeed matchi] = 0 for each
i. Intuitively, since each time the symbolic simulation stops
at the internal match[i] signal, this approach avoids the OBDD
size blow up problem at the kit signal.

The above example depicts an ideal scenario where ATPG
and symbolic simulation can work together nicely to solve a
problem that cannot be solved by each engine alone. Concep-
tually, ATPG is responsible for case-splitting of a given as-
sertion into a set of simpler and independent sub-assertions.
Each sub-assertion can then be checked by symbolic simula-
tion separately or collectively. For example, after the ATPG
pracesses the output OR gate, the CAM assertion will be par-
titioned into 8 sub-assertions where their consequents are all
different. As an example, the sub-assertions for match0[0] =0
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and march0[0] = 1 are described below.

(sub-assertion for march[0] = 0)
(TIO] = T3 IAN (TN =17 ) AT = T*)A(T[3] = T3 )A
(tagin =T ) A (D[0] = DF“)A
(D[1] = D{*) A{D[2] = Dy*) A(D[3] = D5}
==LEADTO
(when{T" &£ T3 Y (match|0] = 0))
(sub-assertion for march[0] = 1)
(TOl=T" A (T =T )A (T2 = ) A(T[3] = T )A
(tagin =T\ A (D]0] = DA
(D[} = D) A(D[2] = DY) A (D3] = DY)
== LEADTO
(wherz(TVEC = TOVEC A TV(.’E __;é Tlve’: /\TV?C # TZ\JBC /\TVEC # 7‘3112(.’)
(match(0] = 1 Adataout = D7)}

Notice that in both sub-assertions, the antecedents are the
same as the antecedents in the original CAM assertion. This
is because the antecedent specifies only initial array conditions
(and inputs) as arbitrary states and hence, is not processed by
the ATPG.

5 ATPG and Symbolic Simulation

Symbellc
Simulatian

Sy
Simulation

. Conflict
Declaion kk’,\\ Interfsce-point Boundary

Figure 5: Combine ATPG and Symbolic Simulation

Figure 5 illustrates the overall branch-and-bound search
strategy by combining ATPG and symbolic simulation. Recall
that for assertion checking, we transform a given prablem into
an ATPG justification instance as described in Figure 3 before.
Hence, the search process always starts with the ATPG justifi-
cation. When enough constant values have been assigned to the
circuit signals (either by implications or by ATPG decisions),
the problem space is reduced. Then, symbolic simulation is
called to decide if there exists a test vecior to satisfy all the
justification objectives under the restricted functional space. In
essence, each path entering the symbolic space in Figure 5 rep-
resents a way to obtain a sub-assertion, and at the bottom of the
search tree, symbolic simulation is run on each sub-assertion.

To enable the above combined ATPG/symbolic simulation
search, several tssues need to be resolved. They include Con-
straint Modeling, Circuir Partitioning, and Sub-assertion Gen-
eration.

Constraint Modeling:



To construct the justification instance based upon a given
assertion, we need a modeling scheme to synthesize the cycle-
based constraints inte constraint circuitry. Since the assertion
specifies constraints based upon clock cycles, within each cy-
cle, the constraints can be thought as a combinational logic.
Then, we can use latches to separate constraint circuits in dif-
ferent time frames {see Figure 3).

* Memory constraints are not easily recognized and syn-
thesized correctly. To simplify the problem, memory
constraints are specified implicitly using two pre-defined
primitives RAM and CAM. The RAM primitive is similar
to the memory primitive commonly used in commercial
ATPG tools. The CAM primitive is similar to the one
depicted in Figure 4 before, with more features included.
One notable feature is to allow the usage of “"mask bits”
when performing tag comparison.

We note that with the two memory primitives in place,
the assertions would look very different from those de-
scribed above. Since basic memory functionalities are
implicitly encoded in the primitives, there is no need to
explicitly specify the memory constraints as those asser-
tions in the previous section. The following figure illus-
trates this point.

e L cAMhin !

"~ CAM_hit_1

—=] CAM primitive CAM_hit_0

-

T & H [ I E——
CAM parameters(t, n, d) ‘E o
& =
(no use} 3 (no use)

Figure 6: Specify CAM assertion using CAM primitive

Given a simple CAM design, the CAM assertion spec-
ifies four things: 1) the input and output connections
corresponding to the CAM primitives, 2) the CAM fea-
tures required (¢.g. CAM_enable and CAM_mask are not
needed), 3) the size parameters (e.g. ¢,1,d specify the tag
width, the number of tag entries, and data width, respec-
tively), and 4) the memory cell corresponding relations
between the design and the primitive. Then, the CAM
primitive can be instantiated into an actual CAM design
representing the assertion. We note that in Figure 6, the
CAM primitive does not include the implementation of
the final CAM hir signal. This should be achieved by an
extra OR gate 5o that the OR can be partitioned into the
ATPG space. Hence, the CAM primitive only includes
the individual CAM_ hit_i for all i.

e Each domain in the consequent of an assertion specifies
the functional space for a Boolean constraint to be true,
Note that outside the functional space, the value is un-
known. Hence, it is intuitive to use a tri-state buffer to
capture each domain specified by a when condition. For
example, a consequent constraint can be (whenD)(s =V)

where both D and V are Boolean functions and s is a sig-
nal. The follewing figure illustrates the usage of a tri-state
buffer to synthesize the constraint.

(when D) (5 = V) =——=Sim

logic to
compute V

logic to
compute D

Figure 7: Synthesize domain constraint

e The domain in the antecedent of an assertion specifies
the input space for which the combined ATPG/symbolic
simulation should search. Since this input domain con-
straints are Boolean functions, they can be synthesized as
combinational logic.

To summarize the discussion, Figure 8 illustrates the justifi-
cation circuit instance for assertion checking.

o

o

(] / [enn]

constraint logic

2 -
g' 3 .l Circuit under check
-
c
- £
= g
2 2 | L ]
pg 3 constraint logle justificatlon
3 £ objective
L |
: |k
@ ©
5 5
3 2
£

assertlon

Figure 8: Illustration of Justification Circuit Instance

Circuit Partitioning:

Given a justification circuit instance, the circuit needs to
be partitioned into ATPG and symbolic domains, Currently,
this partitioning is static and follows the simple rules: 1) The
(word-level) comparator outputs are the boundaries between
the two domains. The downstream logic is given to ATPG and
the upstream logic is given to symbolic simulation. 2) Logic
that controls a MUX selection or an enable signal for a primi-
tive (such as latch or tri-state buffer) belongs to ATPG domain.
3) Memory primitives belong to symbolic domain. 4) Input do-
main constraint logic are handled by symbolic simulation. 5)
All logic that locates on the path of a word-level data bus (or
address bus) going to a memory stays in the symbeolic domain,
6) Finally, the output logic to the justification output is handled
by ATPG,

We note that if there exists a complex Finite State Machine
(FSM} in the circuit for generating control signals, then the en-
tire FSM should be handled by the ATPG. However, for the
high-performance memory designs used in our experiments,
complex FSM does not really exist. Hence, currently we do
not consider the handling of complex FSM. Moreover, a mem-
ory assertion often specifies functional properties that should
be true within a few clock cycles. Hence, after timeframe ex-
pansion, the primary purpose of latches can be viewed simply
as state holding elements in a pipeline.
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Sub-assertion Generation:

Given a justification circuit instance as that in Figure 8, es-
sentially ATPG is used to produce a simpler sub-assertion from
the assertion consiraint circuit and then, symbolic simulation
will simulate the sub-assertion on the circuit under check to
see if the assigned values by the ATPG on all signals can in-
deed be satisfied. We emphasize that this process is different
from traditional use of ATPG for structural equivalence check-
ing. When performing structural equivalence checking, ATPG
starts from the justification objective at the primary output,
and goes backward (by ATPG justification and implications)
on both the golden model circuit and the circuit under check
. In our approach, the analysis on the assertion constraint cir-
cuit is also done backward in order to produce a sub-assertion.
However, symbolic simulation of the sub-assertion on the cir-
cuit under check proceeds forward.

It is also important to note that for assertion checking, the
search space on the assertion constraint circuit is restricted by
the constraints specified in the consequent. Take the simple
CAM as an example. The consequent specifies that the hir
should be a constant (1 or 9). Hence, ATPG does not need
to try hir = 1 if hit = 0 is already specified (and vice verse) on
the assertion circuit. From this viewpoint, solving the justifica-
tion circuit instance in our approach is different from achieving
the strucfural equivalence checking as well.

5.1 Backward Analysis of Assertion Constraint
Circuit for Generating Sub-Assertions

As illustrated in Figure 5 above, ATPG will always assign
enough constant values (by implications and/or decisions) so
that all signals crossing the ATPG and symbolic simulation do-
mains are holding constant logic values. At that peint, back-
ward analysis on the part of assertion constraint circuit, which
belongs to the symbolic domain is done to generate a sub-
assertion,

£

i}'ﬂ< 3
=g

input consteaint:
whenie = F(a,b,c.d))

addr
ren
T | wen

RAM

Inftiatized as RAM{A] =0~

Figure 9: Illustration of Backward Anatysis

Figure 9 depicts several examples to illustrate this analysis.
To generate a sub-assertion based upon ATPG-assigned con-
stant values, the goal is to produce, from the assertion circuit,
symbolic inputs with input constraints satisfying both ATPG
assigned values and the assertion circuit functionality. Since
ATPG starts the justification process from the output, the anal-
ysis has to be done by traversing the assertion circuit backward.
We describe the fundamental principles in this analysis using
the four examples shown in the figure.
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1. For a MUX, suppose the output is given as a termary func-
tion D. In order to get this I3, depending on the value on
the selection line, either input should hold the function
D. Since the selection line and its cone of logic belong to
the ATPG domain, ATPG should have already assigned a
value to this line before the analysis. Hence, the analysis
is straightforward.

2. For other primitives such as latch, tri-state buffer with
“enable” control, the analysis is straightforward as well
since those controls belong to the ATPG domain.

3. For random logic as shown in case (3} in the figure,
suppose a ternary function e appears at the output. In
this case, four additional symbols a, b, ¢,d are produced.
However, the values of these four symbols are con-
strained by F{a,b,c,d) = e where F is the function im-
plemented by the logic.

4. For a memory core instantiated from a RAM primitive
{case (4)), suppose the symbolic data vector D is given.
Then, the question becomes how to get D by setting up
the RAM inputs and initial condition. In this case, a sym-
bolic index A is used as both the input read address and
the initialization address. Hence the RAM is initialized
by the symbolic index as RAM [ 1= T. Moreover, the
read enable ren should be high and the write enable wen
should be low.

5.2 CAM Encoding Schemes

s ¢
hit T hit
? tag TAGs
- match0 matcho
T0 wayD
== matcht tcht
_T=__L—|+—»mh way! match
—= match2 match2
T2 way2
E match3 way3 match3

m @
Figure 10: Illustration of CAM Problem

In backward analysis, CAM represents the most interesting
case. Consider the two problems itlustrated in Figure 10. At
first, ATPG assigns a logic value to the hif signal. Suppose this
value is 0. With ATPG implication, match{...matchd all re-
ceive value (. This represents a constraint on the given CAM
that the input tag should match no tags stored in the CAM ar-
ray. In backward analysis, this consiraint has to be encoded
into the CAM rag input. The problem can be formulated in
two ways as depicted in the figure.

1. In (1), we assume that the CAM array is initialized with
an arbitrary state represented by the four unconstrained
symbolic vectors 7, 5, and T; Then, the question
becomes: what values tag should be assigned so that it
will match none of the symbolic vectors?

2. In (2), we assume that the input is arbitrary and repre-
sented by the symbolic vectors 7 . And the question is:
what values should we use to initialize the CAM so that
none of the stored tags will match



The above two formulations actually try to solve the same
problem from different perspectives. In the following, we dis-
cuss their solutions.

Formulation (1):
The most straightforward method to represent the constraint

that the input rag matches none of the stored tags in the array
can be:

(when(T #TYA(T #THA(T £ T)IANT £ T)HT)

However, this encoding for rag essentially results in the
same complexity as using the symbolic simulation alone to
solve the CAM verification problem. This is because to rep-
resent the condition (when(? # ﬁ]) A (? 7 ﬁ) /‘\(? # T}
Al T # T;)), we run into the same potential probiem of OBDD
size blow up as discussed before. Hence, we need to adopt
more sophisticated encoding schemes for CAM as described
betow.

The fundamental idea of CAM encaoding was first proposed
in [14]. Here we extend the idea to solve the given prob-
lem. Consider T()) first. Assume TE; = [fo,- .. tw-1] Where w
is the tag width. In order for tag to mismatch with g, tag
should be consistent with one of the following tenary vectors:
(“tQ,X,...,X), (X,—*f;,X,...,X), e (X,...,X,—'tw_1).

To encode the fact that tag is one of the above ternary vec-
tors, we can use a symbolic index fy where the width of Iy is
equal to [logw]. Then, tag should be assigned the following
ternary symbolic values (tag[0] is the most significant bit of
tag):

tag(0) := (when{lp = 0)) (—1p)
rag1] := (when(lp = 1)){—1;)

taglw — 1} 1= (when(lp = w—1)){~t,_1)

Then, it can be easily verified that (when(ly < w)), the com-
parison between rag and Ty will always result in a mismatch.
We note that with the above scheme, all possible logic values
that result in a mismatch between the rag and ‘T_)() are encoded.

By applying the same concept to it T, and 3. we
will need additional three symbolic indices I, [, I3 each with
[fogw] wide. Then, the following shows the symbolic value
assigned to tag’s bit 0 rag(0i(simifar assignments can be done
for rag[l]...rag[w — 1)

(when(ly = 0) A(h # 0) A (L # 0) A (s # on(ﬂgm)/\
(when(ly # 0) A (I, =0) A(h £ O)A (L # 0))(ﬁ%[0])f\
(ol £ 0) (1 £0) 1 = 0)\ (15 £ O) TN
(when(lo # O} A (I # 0) A (12 # 0) A {13 = 0)) (- T3 [0])A
(when(Ip = 0)A(I) =0) A {l # 0) A (I3 3£ 0)

R
when Al =0A =0 A(F
N = RO ROA

(when(lp = 0)A (5} =0)A (L =0)A (I =0)
ATED) = T3 0] = Ti0) = RO o)
In the above teméry formula, the only condition that does
not appear in the when condition is (Iy Z ) A (I} £ 0) A{h £
0} A (I3 # 0) which represents the case that the mismatch can-
not happen at the Gth bit (most significant bit) and this is not
true.

With similar ternary function encoding schemes, we can as-
sign symbolic values to bits tag[1]...taglw — 1]. Then, it can
be verified that after the tag is assigned with these symbolic
values, it will not match any of the %, 1 ,Tz), 3.

Formulation (2);

Following the same concept, we can solve the problem in
{2) more easily. Given a symbolic vector T) we introduce four
symbolic indices Jo,J1,J2,/5. Then, we use Jy to encode the
values for way(, J; for wayl, and so on. The following repeats
the encoding for way0:

way0[0] := (when(Jy = 0))(~T [0])
wayO[1] := (when{do = 1)}(~T [1])
wayO[w — 1] := (when(Jg =w— 1))(~ T [w—1])
wayl,way2,way3 can follow similar encoding schemes.
Then, it is easy to check that T’ will not match any one of
the tags stored in the CAM array [14].
CAM-hit Encoding:

The encoding scheme in formulation (2) above is sim-
pler (use less number of symbols) and can easily be ex-
tended to represent the cases that kit = 1. For example, sup-
pose that for justifying hir = 1, ATPG assigns 0,1,1,0 to
matchQ, marchl, match2, match3 (see Figure 10 for the defini-
tions of these signals), respectively. Then, we introduce two
symbolic indices Jy and J3 in this case to encode that way0 and
way3 have values not equal to T'. For wayl and way2, we can
simply assign T as the initial value. The following summa-
rizes the backward analysis when comparison is involved.

T 1

S S ~ UL L
in1 om ini aut in1 h! out int out

in2 —m N2 ' in2 — In2 l
T T, 201 5 T

Mask Bits:

In many CAM design, the tag comparison can be masked by
given mask bits. Let mask[0..w — 1] be the mask bits. Then,
suppose that we want to ensure way(Q does not match T based
upon mask. In other word, only if mask[i] = | will the ith bits
of wayQ be compared to T [i]. With the symbolic index Jy, the
values of mask bits can be encoded simply as below.

mask[0] = (when(Jy = 0))(1)
mask|[1] := (when(Jy = 1))(1)

maskiw — 1] := (when(Jy = w—1))(1)
With mask being encoded in this way, and way() being en-

coded the way above, together they state the fact that 3 s.t.
maskJo] = 1 AwayO[Jy] # T Jg).

5.3 Consistency Check

After backward analysis on the assertion circuit, a sub-
assertion is produced. In this sub-assertion, ali the constraints
imposed by the assertion circuit and by the ATPG assigned
constants are encoded as symbaolic inputs and symbolic initial
states in the arrays. Then, these symbolic constraints are sim-
ulated on the circnit under check by the symbolic simulator.
The results are checked with the ATPG assigned values on the
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circuit. For a given signal s, suppose that ATPG assign a jus-
tification value 0 and symbolic simulation computes a ternary
function S for 5. Then, we check 10 see if S can be O with at
least one logic value assignment to all the symbols in use. If
this is possible, then assertion checking fails and the value as-
signment is reported as the witness vector to differentiate the
assertion and the circuit. If for all signal checks they pass, then
the sub-assertion checking succeeds, and the ATPG continues
the search until all search space is exhausted.

6 Verification of MMU

In this section, we describe the application of our approach
to verify the MMU design in Motorola high-performance mi-
croprocessors [23].

Motorela microprocessor MMU containg 64-entry, two-way
set-associative, data and instruction Translation Look-aside
Buffers (DTLB and TTLB) that provide support for demand-
paged virtual memory address translation and variable-sized
block translation. The block diagram of the instruction side
MMU (IMMU) is shown in Figure 11.

MMU supports block address translation through the use of
two independent instruction and data block address translation
(IBAT and DBAT) arrays of four entries each. Effective ad-
dresses are compared simultaneously with all four entries in a
BAT array during block translation. If the address is present
i the BAT, the hit signal is 1, else it is 0. In the architecture
definition, if an effective address hits in both the TLB and BAT
array, the BAT translation takes priority.

Instruction Unit
BFU A[20-31]
Ea[0:19}
Eal0:3] Instruction—Side BAT
IBATO Upper
8{ Segment Registers o SATOTPRE
IBATO Lower
Upper 24 bits
of virtual address -
15
Y= | IBAT3Uppar
o ,_L IBAT3 Lower
Bat~-Hit
| Page Table | |
Search Logle
Instruction TLB @
C‘\._
53
To ICache

Figure 11: Block Diagram of IMMU [23]

The implementations of the instruction side MMU (IMMU)
and data side MMU (DMMLU) are similar. Hence, in our work
we only focus on IMMU. One particular MMU functionality to
which we pay more attention is the address translation that in-
volves both BAT and TLB. That is, the effectiveness address e¢
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misses all four entries in BAT, and the TLB and segment regis-
ter file (SEG) are responsible to produce the physical address.
This assertion is interesting because it enforces a dependency
of TLB on BAT and hence, results in a system-level assertion.
Anether interesting case is to verify BAT alone. Due to the
content addressable nature of the BAT, verification of BAT us-
ing symbolic simuiation was not very efficient before. Hence,
we are also intercsted in knowing how effective the ATPG and
symbolic simulation combined strategy will be for the BAT.

6.1 IBAT Unit

8a{0.19}
n(15,19)
an{0..14)
clk
Upper BAT Registars Lowsr BAT Registers.

[ A ¥
N

wayd| BEPI Jgoo BL|vsvp BRPN wmsl_]

wayt| BEPI inm BL| VIEE BRPN ol

2o wayz| BEPI ]200 BL Vﬂ\!’p BRAPN

vavp| | BRPN

(0. 14}

brpn(0..19}

bat_hit rpn_stat(19)

Figure 12: Simplified BAT Organization

Figure 12 illustrates the BAT organization. The BAT is or-
ganized as a 4-way CAM. In each way, the registers are orga-
nized as upper registers (32 bits) and lower registers (32 bits).
In the non-8PR mode where spr = 0, the BAT translates the i (9
< i < 15) most significant bits of the effective address ea into
the physical address via the CAM associative read operation.
The remaining ea bits pass unchanged.

In BAT address translation, the incoming effective address
ea{0..14) is compared to the 15-bit Block Effective Page In-
dex (BEPI) entries. Each entry comparison is masked by the
L Ll-bit Block Length (BL} on the Sth w 15th bits of ea (and
BEFT). In the functional mode, the legal combinations of BL
are O0---0,00---01,00---011,...,011---},and 11---1. A ©'s
indicates that the bit should be compared. If BL is all 1's, then
only the most significant 4 bits are compared.

Each tag entry contains two "valid” bits (V's, V p) o indicate
if BEPI is valid. Which valid bit is used is controlled by the
incoming signal privilege. If an entry valid bit is 0, then the
entry comparison fails by default,

When there is a match in BEPI, the corresponding 15-bit
Block Real Page Number BRPN is sent out as the upper 15-bit
of the physical address brpn(0..19).

6.2 BAT Results

We focus on the assertion where eq does not match any of
the BEP! entries (i.e. bar hit = 0). From past experiences,
this assertion is the most difficult one to be verified by OBDD-
based symbolic simulation [2]. In the experiments, we consider
various cases as explained below.

SS-alone For these experiments, we discuss two cases, one
with a non-optimized variable ordering and the other with
a carefully optimized manual ordering.



ATPG/SS For these experiments, we also study two cases, one
using the encoding scheme described in Formulation (1)
in Section 5.2 and the other using the encoding scheme
described in Formulation (2).

6.2.1 SS-alone

symbolicbits| 1 ] 2|31 a1 5] 6] 7 |>7
tme (sec) | 14| 1.8]2.3]46.8]533]86.8] 177.1] abort

Table 1: BAT Results with Non-Optimized Ordering

In the initial experiments, for debugging the program we
often assign less number of symbolic bits to both BEP/
and eq. For example, to use only 3 symbolic bits, we
can have BEPI[0..14] = [By, B1,B3,1,1,...1] and eal0..14] =
[eag, eay,eaz,1,1,...,1]. In this way, the symbolic simulation
complexity can be reduced.

Without any manual effort to adjust the variable ordering,
symbolic simulation cannot finish the BAT miss assertion even
for the case where onty 3 out of the 15 bits in BEPI and ea
are assigned with symbolic values. With the manual effort try-
ing to interleave the symbolic vectors, symbolic simulation can
handle up to 7 bits of symbolic values. Table 1 shows the run
times for using from 1 to 7 symbolic bits in e¢ and BEPI. 1f
more than 7 symbolic bits are used, then the run time would
take too long. OBDD re-ordering would consume too much
time during the symbolic simulation and we aborted the run
after waiting for some time (say, 5-10 minutes). All our exper-
iments were run on a Pentium 4 1.5G machine running Linux
Mandrake 2.4.8-26mdk with 512M memory.

symbolic bits 3-bit 6-bit | 10-bit | 11-bit | 15-bit*
time {sec} 8.6 11.9 742 127.1 | 3773
total OBDD nodes| 4531 8485 | 12271 | 14991 | 28395
max OBDD nodes | 133886 | 141924 | 186173 | 199650 | 392544

*No constant logic values are used

Table 2: BAT Results with Manually Optimized Ordering

We manually tuned the OBDD ordering and repeated the
experiments. After encugh effort, we were able to find a good
ordering that allows symbolic simulation to run. Table 2 shows
the results. In this sequence of experiments, we were able to
complete the assertion check without using any constant logic
values to simplify the assertion. By comparing the results in
Table 1 and in Table 2, we observe that variable ordering sig-
nificantly impacts the performance of symbeolic simulation.

For the OBDD sizes, we show two types of data: the total
nurber of OBDD nodes at the end of symbolic simulation (to-
tal OBDD nedes), and the maximum number of OBDD nodes
during the symbolic simulation (max OBDD nodes). The total
number of OBDD nodes depends on the design functionality
and the variable ordering at the end (after dynamic ordering).
The maximum number of OBDD nodes depends on the imple-
mentation and the initial ordering given.

6.2.2 ATPG/SS
Table 3 presents the results by using ATPG and symbolic sim-

ulation combined. Here we compare two different CAM en-
coding schemes from Formulations (1) and (2). We note that
the BAT is a 4-way design. However, the resuits shown in the
first row were obtained by disabling 2 entries in the BAT and

OBDD nodes

Time (sec)| total max
Formulation (1)*, 2-way 22.1 1770 | 589824
Formulation (1)*, 4-way | 2739 |291259] 692091
Formulation {2)*, 4-way 0.2 377 < 500

*indicate which CAM encoding is used

Table 3: BAT Results with ATPG/SS Combined

making it only 2-way. Our intention was to show how sensitive
the encoding scheme ”(1)” was to the number of BAT entries.

As it can be observed, the encoding scheme “(2)” is much
more efficient. The performance of the encoding scheme (1)
is very sensitive to the number of BAT entries and hence,
the scheme might not scale well. We note that the encod-
ing scheme (1) uses almost 4 times more symbolic values
than the encoding scheme (2).” Hence, intuitively the encod-
ing scheme ”(2)” should be better. For results in the row For-
mulation {2} in Table 3, we emphasize that no manua! effort is
required to adjust the variable ordering.

6.3 TLB Results

Time (sec) | total OBDD nodes
$5-alone* 2.8 10219
ATPG/SS 31 12149

* with manually optimized ordering

Table 4: TLB Results for tb_hitQ = 1,tib_hit1 =0

The TLB is organized as a 2-way 64-entry array, addressable
by a TLB index rindex[0..5] (Figure 11). For address transla-
tion, the two 35-bit tags stored in the entry pointed by rindex
are compared to the effective address ea and data from the seg-
ment register. When way 0 entry matches, the address is com-
puted from the data stored in way C and t/6_Ait0 = I (and vice
verse).

Table 4 shows results based upon the assertion for t1b_firQ =
1 and #1b_kirl = 0. We emphasize that for symbolic simula-
tion alone, if no manual effort is involved to adjust the variable
ordering, the simulation would abort when more than 19 sym-
bolic bits are used. With 18 symbolic bits, the symbolic simula-
tion took 124.3 seconds to complete and the maximum number
of OBDD nodes was about 4.5M, and with 20 symbolic bits,
the maximum number of OBDD nodes exceeds 22M and the
run aborted. However, for ATPG/symbolic simulation com-
bined, no special ordering is required. In ATPG/SS, we adopt
the "CAM-hit” encoding scheme as described in Section 5.2.

6.4 MMU Results

Time (sec)
ATPG/SS 8.3
*88-alone aborts in this case

Table 5: MMU Results for (bat_hit =0, tib_hit = 1)

total OBDD nodes
12738

Table 5 demonstrates the results by using ATPG and sym-
bolic simulation combined to verify the address translation as-
sertion defined on the whole MMU. In this assertion, the out-
puts of the TLB depend on the comparison results in the BAT.
Symbolic simulation alone was not able to finish the ran within
a reasonable time. In ATPG/SS, the Formulation (2) CAM en-
coding is used. The total number of OBDD nodes was the max-
imum among all sub-assertion runs. The combined strategy can
finish the checking of the assertion in less than 9 seconds!

Paper 8.2

211



7 Conclusion

In this paper, we present a novel approach to combine ATPG
and symbolic simulation for efficient system-level validation
of embedded memories. Our appreach allows ATPG justifica-
tion to partition a given assertion into a sequence of simpler
sub-assertions to be checked by the ternary symbolic simula-
ticn. We compare the new method to symbolic simulation, and
demonstrate the effectiveness of the new method through ex-
periments on Motorola microprocessor MMU. Qur experience
indicates that without combining with the ATPG, the perfor-
mance of the OBDD-based symbolic simulation is sensitive to
the initial variable ordering given. In many cases, manual effort
is required to identify a goed variable ordering for symbolic
simulation to run. With our ATPG and symbolic simulation
combined approach, the performance is less sensitive to the ni-
tial variable ordering. ATPG and symbolic simulation together
is able to verify a system-level assertion that was not possible
to verify by using just symbolic simulation alone. In our future
work, we will apply the new methods to other memory designs
as well as to larger memory systems.
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