
2

Tool Overview

Simulation data

Data filtering engine
Domain partitioning

Identify signal groups for learning
Boolean learner Arithmetic learner Array learner

Interpretable model
representations

Justification friendly
models

designer ATPG

Data miner

queries patterns

Guide test template
modifications

Feedback
To designers

Associate rule
analysis (Onur)DD-based

(both)

OBDD



3

Boolean learner

• The basic engine is done and ready to be 
applied
– Decision diagram based
– OBDD representation of learned results

• Approximate OBDDs
• Limited size, never blow up
• Optimized ordering by association rule analysis

– Comparison to symbolic simulation (Tao Feng)

• Extension to hybrid domain is under way (Onur)



4

Learner

• Learner will build a model g to relate 
the I/O behavior: g(I) = O

• Also, given an vector “out”, learner 
can computes g-1(out) easily

Block
box

Input
Data I

Output
Data O



5

Our Focus

• Our conjecture is that there are many problems that can be 
solved easily from data learning and mining perspective 
(but hard for a formal search method)
– We hope a large portion of the problems are in this category
– They may be tedious but “not hard”
– We need to carefully define what problems are in this category

• Learning + formal search may take care of some problems

Data mining
solvable

Learning +
ATPG/SAT

solvable

Formal
Search
solvable

manual



6

One Way To Use Learned Models

• Combine learned models with local SAT to guide 
pattern justification

• Learned models can be on different domains
– Boolean, Arithmetic, Array

Datapath target

moduleController

Local SAT

Guided by learned model G

Guided by learned model H

easy
for 

designer
to 

figure it
out



7

This Vs. Other Methods
• Learning doesn’t solve the justifiability problem

– Given an output pattern, does it exist an input pattern 
to justify this output pattern?

– Learning will give you an answer, but without 
guarantee

– Completely solving the problem requires search (SAT)
• Design size is irrelevant

– Design is a block box to learning
– No internal OBDD blow up problem likes that in 

symbolic sim.
• Learned OBDDs are approximate OBDDs

– Sizes are pre-limited 
– Orderings are pre-determined
– They may be meaningless

• But in general, we have seen very good results



8

Designs
• Synthesis benchmarks
• OpenRISC 1200

– A small processor core
– 5-stage pipeline
– Show coverage improvements with 

proposed learning techniques
• Freescale test-cases to be discussed
• Integrate with industrial test bench 

development environment
– Synposys Vera



9

Discussion – Commonly asked questions
• How can data mining or learning help me to cover an assertion based 

on a system state that requires 1000 cycles to reach?
– We don’t know yet …
– There may be problems more suitable for using formal search like SAT or 

hybrid solver, etc. 
– Our goal is to understand and draw that boundary between problems more 

suitable for using learning and problems suitable for using formal search
• How can you guarantee your data mining or learning results?

– Data mining by nature has no guarantee 
– Hence, the focus is on doing as much as possible, as quickly as possible, 

and know when the tool could fail
• Can your tool help me to generate functional tests for speed binning?

– Definitely. This may be the one of the applications for industrial 
experiments

• What if your tool fails?
– Then, you need to go back to formal search or manual approach
– But, if the tool fails, you will know it quickly so that you won’t waste your 

time waiting for the results


