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Boolean learner

• The basic engine is done and ready to be 
applied
– Decision diagram based
– OBDD representation of learned results

• Approximate OBDDs
• Limited size, never blow up
• Optimized ordering by association rule analysis

– Comparison to symbolic simulation (Tao Feng)

• Extension to hybrid domain is under way (Onur)
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Learner

• Learner will build a model g to relate 
the I/O behavior: g(I) = O

• Also, given an vector “out”, learner 
can computes g-1(out) easily

Block
box

Input
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Output
Data O
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Our Focus

• Our conjecture is that there are many problems that can be 
solved easily from data learning and mining perspective 
(but hard for a formal search method)
– We hope a large portion of the problems are in this category
– They may be tedious but “not hard”
– We need to carefully define what problems are in this category

• Learning + formal search may take care of some problems
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One Way To Use Learned Models

• Combine learned models with local SAT to guide 
pattern justification

• Learned models can be on different domains
– Boolean, Arithmetic, Array

Datapath target

moduleController

Local SAT

Guided by learned model G

Guided by learned model H
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This Vs. Other Methods
• Learning doesn’t solve the justifiability problem

– Given an output pattern, does it exist an input pattern 
to justify this output pattern?

– Learning will give you an answer, but without 
guarantee

– Completely solving the problem requires search (SAT)
• Design size is irrelevant

– Design is a block box to learning
– No internal OBDD blow up problem likes that in 

symbolic sim.
• Learned OBDDs are approximate OBDDs

– Sizes are pre-limited 
– Orderings are pre-determined
– They may be meaningless

• But in general, we have seen very good results
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Designs
• Synthesis benchmarks
• OpenRISC 1200

– A small processor core
– 5-stage pipeline
– Show coverage improvements with 

proposed learning techniques
• Freescale test-cases to be discussed
• Integrate with industrial test bench 

development environment
– Synposys Vera
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Discussion – Commonly asked questions
• How can data mining or learning help me to cover an assertion based 

on a system state that requires 1000 cycles to reach?
– We don’t know yet …
– There may be problems more suitable for using formal search like SAT or 

hybrid solver, etc. 
– Our goal is to understand and draw that boundary between problems more 

suitable for using learning and problems suitable for using formal search
• How can you guarantee your data mining or learning results?

– Data mining by nature has no guarantee 
– Hence, the focus is on doing as much as possible, as quickly as possible, 

and know when the tool could fail
• Can your tool help me to generate functional tests for speed binning?

– Definitely. This may be the one of the applications for industrial 
experiments

• What if your tool fails?
– Then, you need to go back to formal search or manual approach
– But, if the tool fails, you will know it quickly so that you won’t waste your 

time waiting for the results


